A no-BS, dead-simple training visualizer for tf-keras

Overview


A no-BS, dead-simple training visualizer for tf-keras
PyPI version PyPI version

TrainingDashboard

Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook with a simple callback. Features:

  • Plots the training loss and a training metric, updated at the end of each batch
  • Plots training and validation losses, updated at the end of each epoch
  • For each metric, plots training and validation values, updated at the end of each epoch
  • Tabulates losses and metrics (both train and validation) and highlights the highest and lowest values in each column

Why should I use this over tensorboard?
This is way simpler to use.

What about livelossplot?
AFAIK, livelossplot does not support intra-epoch loss/metric plotting. Also, TrainingDashboard uses bqplot for plotting, which provides support for much more interactive elements like tooltips (currently a TODO). On the other hand, livelossplot is a much more mature project, and you should use it if you have a specific use case.

Installation

TrainingDashboard can be installed from PyPI with the following command:

pip install training-dashboard

Alternatively, you can clone this repository and run the following command from the root directory:

pip install .

Usage

TrainingDashboard is a tf-keras callback and should be used as such. It takes the following optional arguments:

  • validation (bool): whether validation data is being used or not
  • min_loss (float): the minimum possible value of the loss function, to fix the lower bound of the y-axis
  • max_loss (float): the maximum possible value of the loss function, to fix the upper bound of the y-axis
  • metrics (list): list of metrics that should be considered for plotting
  • min_metric_dict (dict): dictionary mapping each (or a subset) of the metrics to their minimum possible value, to fix the lower bound of the y-axis
  • max_metric_dict (dict): dictionary mapping each (or a subset) of the metrics to their maximum possible value, to fix the upper bound of the y-axis
  • batch_step (int): step size for plotting the results within each epoch. If the time to process each batch is very small, plotting at each step may cause the training to slow down significantly. In such cases, it is advisable to skip a few batches between each update.
from training_dashboard import TrainingDashboard
model.fit(X,
          Y,
          epochs=10,
          callbacks=[TrainingDashboard()])

or, a more elaborate example:

from training_dashboard import TrainingDashboard
dashboard = TrainingDashboard(validation=True, # because we are using validation data and want to track its metrics
                             min_loss=0, # we want the loss axes to be fixed on the lower end
                             metrics=["accuracy", "auc"], # metrics that we want plotted
                             batch_step=10, # plot every 10th batch
                             min_metric_dict={"accuracy": 0, "auc": 0}, # minimum possible value for metrics used
                             max_metric_dict={"accuracy": 1, "auc": 1}) # maximum possible value for metrics used
model.fit(x_train,
          y_train,
          batch_size=512,
          epochs=25,
          verbose=1,
          validation_split=0.2,
          callbacks=[dashboard])

For a more detailed example, check mnist_example.ipynb inside the examples folder.

Support

Reach out to me at one of the following places!

Twitter: @vibhuagrawal
Email: vibhu[dot]agrawal14[at]gmail

License

Project is distributed under MIT License.

Owner
Vibhu Agrawal
Vibhu Agrawal
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022