A no-BS, dead-simple training visualizer for tf-keras

Overview


A no-BS, dead-simple training visualizer for tf-keras
PyPI version PyPI version

TrainingDashboard

Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook with a simple callback. Features:

  • Plots the training loss and a training metric, updated at the end of each batch
  • Plots training and validation losses, updated at the end of each epoch
  • For each metric, plots training and validation values, updated at the end of each epoch
  • Tabulates losses and metrics (both train and validation) and highlights the highest and lowest values in each column

Why should I use this over tensorboard?
This is way simpler to use.

What about livelossplot?
AFAIK, livelossplot does not support intra-epoch loss/metric plotting. Also, TrainingDashboard uses bqplot for plotting, which provides support for much more interactive elements like tooltips (currently a TODO). On the other hand, livelossplot is a much more mature project, and you should use it if you have a specific use case.

Installation

TrainingDashboard can be installed from PyPI with the following command:

pip install training-dashboard

Alternatively, you can clone this repository and run the following command from the root directory:

pip install .

Usage

TrainingDashboard is a tf-keras callback and should be used as such. It takes the following optional arguments:

  • validation (bool): whether validation data is being used or not
  • min_loss (float): the minimum possible value of the loss function, to fix the lower bound of the y-axis
  • max_loss (float): the maximum possible value of the loss function, to fix the upper bound of the y-axis
  • metrics (list): list of metrics that should be considered for plotting
  • min_metric_dict (dict): dictionary mapping each (or a subset) of the metrics to their minimum possible value, to fix the lower bound of the y-axis
  • max_metric_dict (dict): dictionary mapping each (or a subset) of the metrics to their maximum possible value, to fix the upper bound of the y-axis
  • batch_step (int): step size for plotting the results within each epoch. If the time to process each batch is very small, plotting at each step may cause the training to slow down significantly. In such cases, it is advisable to skip a few batches between each update.
from training_dashboard import TrainingDashboard
model.fit(X,
          Y,
          epochs=10,
          callbacks=[TrainingDashboard()])

or, a more elaborate example:

from training_dashboard import TrainingDashboard
dashboard = TrainingDashboard(validation=True, # because we are using validation data and want to track its metrics
                             min_loss=0, # we want the loss axes to be fixed on the lower end
                             metrics=["accuracy", "auc"], # metrics that we want plotted
                             batch_step=10, # plot every 10th batch
                             min_metric_dict={"accuracy": 0, "auc": 0}, # minimum possible value for metrics used
                             max_metric_dict={"accuracy": 1, "auc": 1}) # maximum possible value for metrics used
model.fit(x_train,
          y_train,
          batch_size=512,
          epochs=25,
          verbose=1,
          validation_split=0.2,
          callbacks=[dashboard])

For a more detailed example, check mnist_example.ipynb inside the examples folder.

Support

Reach out to me at one of the following places!

Twitter: @vibhuagrawal
Email: vibhu[dot]agrawal14[at]gmail

License

Project is distributed under MIT License.

Owner
Vibhu Agrawal
Vibhu Agrawal
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023