OpenDILab Multi-Agent Environment

Overview

Go-Bigger: Multi-Agent Decision Intelligence Environment

PyPI Anaconda-Server Badge Read the Docs Read the Docs unit_test codecov

GoBigger Doc (中文版)

Ongoing

  • 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent Decision Intelligence Environment. Come and make your agents in the game!

GoBigger is a simple and efficient agar-like game engine and provides various interfaces for game AI development. The game is similar to Agar, which is a massively multiplayer online action game created by Brazilian developer Matheus Valadares. In GoBigger, players control one or more circular balls in a map. The goal is to gain as much size as possible by eating food balls and other balls smaller than the player's balls while avoiding larger ones which can eat the player's balls. Each player starts with one ball, but players can split a ball into two when it reaches a sufficient size, allowing them to control multiple balls.

Introduction

GoBigger allows users to interact with the multi-agent environment easily within the basic rules. Through the given interface, users can simply get the observation in game and apply their operations for their agents.

Basic Rules

In order to understand the rules in the game, GoBigger provides a few concepts as following:

  • Match: GoBigger will allow serveral agents (4 by default) to join in a match. There are many different units in a match, such as food balls, thorns balls, spore balls and player balls. Each agent should gain more size by eating other balls to get a higher rank when this match ends.
  • Agent: Each agent control a team including serveral players (3 by default). Teamwork is important for a agent to play against other agents.
  • Player: Each player starts with one ball. In order to improve the operability of the game, GoBigger provides serveral operation for a player ball, including split, eject and stop.
  • Ball: GoBigger provides 4 kinds of balls in a match.
    • Food Ball: Food balls are the neutral resources in the game. If a player ball eat a food ball, the food ball’s size will be parsed to the player ball.
    • Thorn Ball: If a player ball eat a thorns ball, the thorns ball’s size will be parsed to the player ball. But at the same time, the player ball will explode and will be splited into several pieces (10 by default).
    • Spore Ball: Spore balls are ejected by the player balls.
    • Player Ball: Player balls are the balls you can control in the game. You can change its moving direction. In addition, it can eat other balls smaller than itself by covering others’ center.

For more details, please refer to what-is-gobigger.

Observation Space

GoBigger also provide a wealth of observable information, and the observation space can be devided into two part. Here is the brief description of the observation space. For more details, please refer to observation-space.

Global State

Global state provides information related to the whole match, such as the map size, the total time and the last time of the match, and the leaderboard within team name and score.

Player State

Player state should be like:

{
    player_name: {
        'feature_layers': list(numpy.ndarray), # features of player
        'rectangle': [left_top_x, left_top_y, right_bottom_x, right_bottom_y], # the vision's position in the map
        'overlap': {
            'food': [[position.x, position.y, radius], ...], 
            'thorns': [[position.x, position.y, radius], ...],
            'spore': [[position.x, position.y, radius], ...],
            'clone': [[[position.x, position.y, radius, player_name, team_name], ...],     
        }, # all balls' info in vision
        'team_name': team_name, # the team which this player belongs to 
    }
}

We define that feature_layers in player_state represents the feature of this player. feature_layers has several channels, and each channel gives the info of food balls, or spore balls, or thorns balls, or player balls in its vision. For example, in a match we have 4 teams and 3 players for each team, then we get feature_layers as a list, and the length of this list should be 15, including 12 player channel, 1 food ball channel , 1 spore ball channel and 1 thorns ball channel.

Since getting feature_layers costs much time, GoBigger also provides player state without feature_layers when you add use_spatial=False in your render. More details here.

Action Space

In fact, a ball can only move, eject, split, and stop in a match, thus the action space simply includes:

  • Moving direction for the player balls.
  • Split: Players can split a ball into two when it reaches a sufficient size.
  • Eject: Player balls can eject spore on your moving direction.
  • Stop: Stop player balls and gather together together.

More details in action-space.

Getting Started

Installation

Prerequisites

We test GoBigger within the following system:

  • Centos 7.6
  • Windows 10
  • MacOS Catalina 10.15

And we recommend that your python version is 3.6.

Get and install GoBigger

You can simply install GoBigger from PyPI with the following command:

pip install gobigger

If you use Anaconda or Miniconda, you can install GoBigger through the following command:

conda install -c opendilab gobigger

You can also install with newest version through GitHub. First get and download the official repository with the following command line.

git clone https://github.com/opendilab/GoBigger.git

Then you can install from source:

# install for use
# Note: use `--user` option to install the related packages in the user own directory(e.g.: ~/.local)
pip install . --user
     
# install for development(if you want to modify GoBigger)
pip install -e . --user

Launch a game environment

After installation, you can launch your game environment easily according the following code:

import random
from gobigger.server import Server
from gobigger.render import EnvRender

server = Server()
render = EnvRender(server.map_width, server.map_height)
server.set_render(render)
server.start()
player_names = server.get_player_names_with_team()
# get [[team1_player1, team1_player2], [team2_player1, team2_player2], ...]
for i in range(10000):
    actions = {player_name: [random.uniform(-1, 1), random.uniform(-1, 1), -1] \
               for team in player_names for player_name in team}
    if not server.step(actions):
        global_state, screen_data_players = server.obs()
    else:
        print('finish game!')
        break
server.close()

We also build a simple env following gym.Env. For more details, you can refer to gobigger_env.py.

Real-time Interaction with game

GoBigger allow users to play game on their personal computer in real-time. Serveral modes are supported for users to explore this game.

Single Player

If you want to play real-time game on your PC on your own, you can launch a game with the following code:

python -m gobigger.bin.play --player-num 1 --vision-type full

In this mode, up arrow & down arrow & left arrow & rigth arrow allows your balls move, Q means eject spore on your moving direction, W means split your balls, and E means stop all your balls and gather them together.

Double Players

If you want to play real-time game on your PC with your friends, you can launch a game with the following code:

python -m gobigger.bin.play --player-num 2 --vision-type full

In this mode, player1 use up arrow & down arrow & left arrow & rigth arrow allows the balls move, [ means eject spore on your moving direction, ] means split your balls, and \ means stop all your balls and gather them together. player2 use W & S & A & D allows the balls move, 1 means eject spore on your moving direction, 2 means split your balls, and 3 means stop all your balls and gather them together.

Single Players with partial vision

If you want to play real-time game on your PC with only partial vision, you can launch a game with the following code:

python -m gobigger.bin.play --player-num 1 --vision-type partial

Your vision depends on all your balls’ positions and their size.

Single Players against bots

If you want to play against a bot, you can launch a game with the following code:

python -m gobigger.bin.play --vs-bot

You can also add more bots in your game. Try to win the game with more bots!

python -m gobigger.bin.play --vs-bot --team-num 4

High-level Operations in GoBigger

Eject towards the center

Surround others by splitting

Eat food balls quickly

Concentrate size

Resources

For more details, please refer to GoBigger Doc (中文版).

License

GoBigger released under the Apache 2.0 license.

Comments
  • pygame.error: Text has zero width

    pygame.error: Text has zero width

    python3.6 -m gobigger.bin.play --player-num 1 --vision-type full pygame 2.0.3 (SDL 2.0.16, Python 3.6.8) Hello from the pygame community. https://www.pygame.org/contribute.html DEBUG:root:{'team_num': 1, 'player_num_per_team': 1, 'map_width': 1000, 'map_height': 1000, 'match_time': 600, 'state_tick_per_second': 20, 'action_tick_per_second': 5, 'collision_detection_type': 'precision', 'save_video': False, 'save_quality': 'high', 'save_path': '', 'manager_settings': {'food_manager': {'num_init': 2000, 'num_min': 2000, 'num_max': 2500, 'refresh_time': 2, 'refresh_num': 30, 'ball_settings': {'radius_min': 2, 'radius_max': 2}}, 'thorns_manager': {'num_init': 15, 'num_min': 15, 'num_max': 20, 'refresh_time': 2, 'refresh_num': 2, 'ball_settings': {'radius_min': 12, 'radius_max': 20, 'vel_max': 100, 'eat_spore_vel_init': 10, 'eat_spore_vel_zero_time': 1}}, 'player_manager': {'ball_settings': {'acc_max': 100, 'vel_max': 25, 'radius_min': 3, 'radius_max': 300, 'radius_init': 3, 'part_num_max': 16, 'on_thorns_part_num': 10, 'on_thorns_part_radius_max': 20, 'split_radius_min': 10, 'eject_radius_min': 10, 'recombine_age': 20, 'split_vel_init': 30, 'split_vel_zero_time': 1, 'stop_zero_time': 1, 'size_decay_rate': 5e-05, 'given_acc_weight': 10}}, 'spore_manager': {'ball_settings': {'radius_min': 3, 'radius_max': 3, 'vel_init': 250, 'vel_zero_time': 0.3, 'spore_radius_init': 20}}}, 'custom_init': {'food': [], 'thorns': [], 'spore': [], 'clone': []}, 'obs_settings': {'with_spatial': True, 'with_speed': False, 'with_all_vision': False}} Traceback (most recent call last): File "/Users/wduo/miniconda3/envs/gobigger/lib/python3.6/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/Users/wduo/miniconda3/envs/gobigger/lib/python3.6/runpy.py", line 85, in _run_code exec(code, run_globals) File "/Users/wduo/miniconda3/envs/gobigger/lib/python3.6/site-packages/gobigger/bin/play.py", line 305, in play_control_by_keyboard() File "/Users/wduo/miniconda3/envs/gobigger/lib/python3.6/site-packages/gobigger/bin/play.py", line 71, in play_control_by_keyboard render.fill(server, direction=None, fps=fps_real, last_time=server.last_time) File "/Users/wduo/miniconda3/envs/gobigger/lib/python3.6/site-packages/gobigger/render/realtime_render.py", line 33, in fill player_num_per_team=1) File "/Users/wduo/miniconda3/envs/gobigger/lib/python3.6/site-packages/gobigger/render/env_render.py", line 219, in render_all_balls_colorful txt = font.render('{}'.format(chr(int(ball.owner)%player_num_per_team+65)), True, WHITE) pygame.error: Text has zero width

    opened by wduo 5
  • Why team num >= 7 is not allowed in Real-time Interaction mode?

    Why team num >= 7 is not allowed in Real-time Interaction mode?

    Hey, I set --team-num 7 and it give me the following error:

    Traceback (most recent call last):
      File "/home/zhou/miniconda3/envs/gobigger/lib/python3.6/runpy.py", line 193, in _run_module_as_main
        "__main__", mod_spec)
      File "/home/zhou/miniconda3/envs/gobigger/lib/python3.6/runpy.py", line 85, in _run_code
        exec(code, run_globals)
      File "/home/zhou/miniconda3/envs/gobigger/lib/python3.6/site-packages/gobigger/bin/play.py", line 311, in <module>
        play_control_by_keyboard_vs_bot(team_num=args.team_num)
      File "/home/zhou/miniconda3/envs/gobigger/lib/python3.6/site-packages/gobigger/bin/play.py", line 289, in play_control_by_keyboard_vs_bot
        render.fill(server, direction=None, fps=fps_real, last_time=server.last_time)
      File "/home/zhou/miniconda3/envs/gobigger/lib/python3.6/site-packages/gobigger/render/realtime_render.py", line 33, in fill
        player_num_per_team=1)
      File "/home/zhou/miniconda3/envs/gobigger/lib/python3.6/site-packages/gobigger/render/env_render.py", line 314, in render_all_balls_colorful
        pygame.draw.circle(screen, PLAYER_COLORS[int(ball.team_name)][0], ball.position, ball.radius)
    IndexError: list index out of range
    

    and it works fine with team num smaller than 7, what's wrong?

    bug 
    opened by SimZhou 4
  • engine update

    engine update

    • [x] 精简的action space,仅保留move, eject, split三个动作
    • [x] 更真实的引擎,使碰撞相关的计算更方便,并可以总结出一套可量化的移动规则
    • [x] 更快的环境step速度,从整体结构上进行优化
    • [x] 新模式:为每个玩家的每个分身球提供单独的动作
    • [x] 文档更新
    opened by mingzhang96 1
  • Is there any related benchmarks?

    Is there any related benchmarks?

    I knew there was a competition on this environment, so I wonder if there are some benchmark results using latest algorithms, or papers experimented on this environment such that comparisons can be made, thanks!

    opened by GEYOUR 1
  • add density in cfg

    add density in cfg

    说明

    config 中添加了 match_ratio 字段。表示比赛setting的配置比例。默认是1.0。这个值将会乘到manager里涉及到球球数量的参数和地图大小上,来保证等比例对场景进行缩放。例如如果这个值设为0.5,则地图宽高会乘以 math.sqrt(0.5) 来保证面积为原来的0.5倍,然后地图内球球的数量会乘以0.5。

    使用

    server = Server(cfg=dict(match_ratio=1.0))
    
    opened by mingzhang96 1
  • add owner for spore

    add owner for spore

    携带孢子球所属玩家信息 我们为每个孢子球赋予了他被哪个玩家吐出的信息。例如,某个孢子球被id为1的玩家吐出,那么这个孢子球会携带一个 owner 属性,并且值为1.

    举个简单的例子,如果你在 obs_settings 中设置了 with_spore_owner=True,那么在你得到的孢子球信息中将会包含 owner 字段。如下所示:

    [position.x, position.y, radius, owner]
    

    当然,如果你同时设置了 with_speed=True,孢子球信息将会变成如下所示:

    [position.x, position.y, radius, vel.x, vel.y, owner]
    
    opened by mingzhang96 1
  • 0.2.0

    0.2.0

    1. Add owner for spore in overlap #37
    2. Add match_ratio in config to control density #38
    3. allow ball to move over border with center 允许球球跨过地图边界,但是球心不能跨过;allow vision over border 玩家的视野可以跨过地图边界,并且始终是正方形,地图外补零表示 #39
    4. engine update #41
    5. add different config #45
    6. add direction for each cloneball #46
    7. add new replayer for .pb files #47
    8. add more config & udpate doc #51
    opened by mingzhang96 1
  • bug fix

    bug fix

    1. In gobigger/balls/clone_ball.py, self.radius + ball.radius may smaller than d.
    2. In gobigger/players/human_player.py, self.get_clone_num() may equal 0.
    opened by mingzhang96 1
  • add cheat for env render

    add cheat for env render

    Get global vision + player's local vision

    In many scenarios, using some cheat information (such as removing the fog of war) can effectively help the algorithm converge. Therefore, on the basis of obtaining the global vision, we have added a mode of obtaining the global vision and the player's local vision at the same time. Get it by specifying cheat=True. Note that in this mode, the setting of with_all_vision will have no effect, because the global vision information will always be returned. For example, assuming there are 2 teams in a game with 1 player in each team, the player_state obtained will be as follows:

    .. code-block::python

    {
        'all': {
            'feature_layers': list(numpy.ndarray),
            'rectangle': None,
            'overlap': {
                'food': [{'position': position, 'radius': radius}, ...],
                'thorns': [{'position': position, 'radius': radius}, ...],
                'spore': [{'position': position, 'radius': radius}, ...],
                'clone': [{'position': position, 'radius': radius, 'player': player_name, 'team': team_name}, ...],
            },
            'team_name': '',
        }
        '0': {
            'feature_layers': list(numpy.ndarray),
            'rectangle': None,
            'overlap': {
                'food': [{'position': position, 'radius': radius}, ...],
                'thorns': [{'position': position, 'radius': radius}, ...],
                'spore': [{'position': position, 'radius': radius}, ...],
                'clone': [{'position': position, 'radius': radius, 'player': player_name, 'team': team_name}, ...],
            },
            'team_name': team_name,
        },
        '1': {
            'feature_layers': list(numpy.ndarray),
            'rectangle': None,
            'overlap': {
                'food': [{'position': position, 'radius': radius}, ...],
                'thorns': [{'position': position, 'radius': radius}, ...],
                'spore': [{'position': position, 'radius': radius}, ...],
                'clone': [{'position': position, 'radius': radius, 'player': player_name, 'team': team_name}, ...],
            },
            'team_name': team_name,
        },
    }
    

    Note that the global view information is placed under the all field, where the team_name is set to empty. The rest of the player information remains the same.

    opened by mingzhang96 1
  • add reload game for server

    add reload game for server

    Now you can reload a game at any frame number!

    Try to use this feature in your config for server:

    save_bin=False, # Whether to save the information of the game
    load_bin=False, # Whether to load the information of a game at the start of the game
    load_bin_path='', # The file path to load the information of a game at the start of the game
    load_bin_frame_num ='all', # can be int (representing the action frame number to load), or 'all' (representing loading all frames)
    
    documentation enhancement 
    opened by mingzhang96 1
Releases(v0.2.0)
Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022