Point-NeRF: Point-based Neural Radiance Fields

Overview

Point-NeRF: Point-based Neural Radiance Fields

Project Sites | Paper | Primary contact: Qiangeng Xu

Point-NeRF uses neural 3D point clouds, with associated neural features, to model a radiance field. Point-NeRF can be rendered efficiently by aggregating neural point features near scene surfaces, in a ray marching-based rendering pipeline. Moreover, Point-NeRF can be initialized via direct inference of a pre-trained deep network to produce a neural point cloud; this point cloud can be finetuned to surpass the visual quality of NeRF with 30X faster training time. Point-NeRF can be combined with other 3D reconstruction methods and handles the errors and outliers in such methods via a novel pruning and growing mechanism.

Reference

Please cite our paper if you are interested
Point-NeRF: Point-based Neural Radiance Fields.    

@article{xu2022point,
  title={Point-NeRF: Point-based Neural Radiance Fields},
  author={Xu, Qiangeng and Xu, Zexiang and Philip, Julien and Bi, Sai and Shu, Zhixin and Sunkavalli, Kalyan and Neumann, Ulrich},
  journal={arXiv preprint arXiv:2201.08845},
  year={2022}
}

Overal Instruction

  1. Please first install the libraries as below and download/prepare the datasets as instructed.
  2. Point Initialization: Download pre-trained MVSNet as below and train the feature extraction from scratch or directly download the pre-trained models. (Obtain 'MVSNet' and 'init' folder in checkpoints folder)
  3. Per-scene Optimization: Download pre-trained models or optimize from scratch as instructed.

We provide all the checkpoint files (google drive) and all the test results images and scores (google drive)

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 16.04, 18.04, 20.04)
  • Python 3.6+
  • PyTorch 1.7 or higher (tested on PyTorch 1.7, 1.8.1, 1.9, 1.10)
  • CUDA 10.2 or higher

Install

Install the dependent libraries as follows:

  • Install the dependent python libraries:
pip install torch==1.8.1+cu102 h5py
pip install imageio scikit-image

We develope our code with pytorch1.8.1 and pycuda2021.1

Data Preparation

The layout should looks like this:

pointnerf
├── data_src
│   ├── dtu
    │   │   │──Cameras
    │   │   │──Depths
    │   │   │──Depths_raw
    │   │   │──Rectified
    ├── nerf
    │   │   │──nerf_synthetic
    ├── nsvf
    │   │   │──Synthetic_NeRF
    ├── scannet
    │   │   │──scans 
    |   │   │   │──scene0101_04
    |   │   │   │──scene0241_01

DTU:

Download the preprocessed DTU training data and Depth_raw from original MVSNet repo and unzip.

NeRF Synthetic

Download nerf_synthetic.zip from here under ``data_src/nerf/''

Tanks & Temples

Follow Neural Sparse Voxel Fields and download Tanks&Temples | download (.zip) | 0_* (training) 1_* (testing) under: ``data_src/nsvf/''

ScanNet

Download and extract ScanNet by following the instructions provided at http://www.scan-net.org/. The detailed steps including:

  • Go to http://www.scan-net.org and fill & sent the request form.
  • You will get a email that has command instruction and a download-scannet.py file, this file is for python 2, you can use our download-scannet.py in the ``data'' directory for python 3.
  • clone the official repo:
    git clone https://github.com/ScanNet/ScanNet.git
    
  • Download specific scenes (used by NSVF):
     python data/download-scannet.py -o ../data_src/scannet/ id scene0101_04 
     python data/download-scannet.py -o ../data_src/scannet/ id scene0241_01
    
  • Process the sens files:
      python ScanNet/SensReader/python/reader.py --filename data_src/nrData/scannet/scans/scene0101_04/scene0101_04.sens  --output_path data_src/nrData/scannet/scans/scene0101_04/exported/ --export_depth_images --export_color_images --export_poses --export_intrinsics
      
      python ScanNet/SensReader/python/reader.py --filename data_src/nrData/scannet/scans/scene0241_01/scene0241_01.sens  --output_path data_src/nrData/scannet/scans/scene0241_01/exported/ --export_depth_images --export_color_images --export_poses --export_intrinsics
    

Point Initialization / Generalization:

  Download pre-trained MVSNet checkpoints:

We trained MVSNet on DTU. You can Download ''MVSNet'' directory from google drive and place them under '''checkpoints/'''

  Train 2D feature extraction and point representation

  Directly use our trained checkpoints files:

Download ''init'' directory from google drive. and place them under '''checkpoints/'''

  Or train from scratch:

Train for point features of 63 channels (as in paper)

bash dev_scripts/ete/dtu_dgt_d012_img0123_conf_color_dir_agg2.sh

Train for point features of 32 channels (better for per-scene optimization)

bash dev_scripts/ete/dtu_dgt_d012_img0123_conf_agg2_32_dirclr20.sh

After the training, you should pick a checkpoint and rename it to best checkpoint, e.g.:

cp checkpoints/dtu_dgt_d012_img0123_conf_color_dir_agg2/250000_net_ray_marching.pth  checkpoints/dtu_dgt_d012_img0123_conf_color_dir_agg2/best_net_ray_marching.pth

cp checkpoints/dtu_dgt_d012_img0123_conf_color_dir_agg2/250000_net_mvs.pth  checkpoints/dtu_dgt_d012_img0123_conf_color_dir_agg2/best_net_mvs.pth

  Test feed forward inference on dtu scenes

These scenes that are selected by MVSNeRF, please also refer their code to understand the metrics calculation.

bash dev_scripts/dtu_test_inf/inftest_scan1.sh
bash dev_scripts/dtu_test_inf/inftest_scan8.sh
bash dev_scripts/dtu_test_inf/inftest_scan21.sh
bash dev_scripts/dtu_test_inf/inftest_scan103.sh
bash dev_scripts/dtu_test_inf/inftest_scan114.sh

Per-scene Optimization:

(Please visit the project sites to see the original videos of above scenes, which have quality loss when being converted to gif files here.)

Download per-scene optimized Point-NeRFs

You can skip training and download the folders of ''nerfsynth'', ''tanksntemples'' and ''scannet'' here google drive, and place them in ''checkpoints/''.

pointnerf
├── checkpoints
│   ├── init
    ├── MVSNet
    ├── nerfsynth
    ├── scannet
    ├── tanksntemples

In each scene, we provide initialized point features and network weights ''0_net_ray_marching.pth'', points and weights at 20K steps ''20000_net_ray_marching.pth'' and 200K steps ''200000_net_ray_marching.pth''

Test the per-scene optimized Point-NeRFs

NeRF Synthetics

test scripts
    bash dev_scripts/w_n360/chair_test.sh
    bash dev_scripts/w_n360/drums_test.sh
    bash dev_scripts/w_n360/ficus_test.sh
    bash dev_scripts/w_n360/hotdog_test.sh
    bash dev_scripts/w_n360/lego_test.sh
    bash dev_scripts/w_n360/materials_test.sh
    bash dev_scripts/w_n360/mic_test.sh
    bash dev_scripts/w_n360/ship_test.sh

ScanNet

test scripts
    bash dev_scripts/w_scannet_etf/scane101_test.sh
    bash dev_scripts/w_scannet_etf/scane241_test.sh

Tanks & Temples

test scripts
    bash dev_scripts/w_tt_ft/barn_test.sh
    bash dev_scripts/w_tt_ft/caterpillar_test.sh
    bash dev_scripts/w_tt_ft/family_test.sh
    bash dev_scripts/w_tt_ft/ignatius_test.sh
    bash dev_scripts/w_tt_ft/truck_test.sh

Per-scene optimize from scatch

Make sure the ''checkpoints'' folder has ''init'' and ''MVSNet''. The training scripts will start to do initialization if there is no ''.pth'' files in a scene folder. It will start from the last ''.pth'' files until reach the iteration of ''maximum_step''.

NeRF Synthetics

train scripts
    bash dev_scripts/w_n360/chair.sh
    bash dev_scripts/w_n360/drums.sh
    bash dev_scripts/w_n360/ficus.sh
    bash dev_scripts/w_n360/hotdog.sh
    bash dev_scripts/w_n360/lego.sh
    bash dev_scripts/w_n360/materials.sh
    bash dev_scripts/w_n360/mic.sh
    bash dev_scripts/w_n360/ship.sh

ScanNet

train scripts
    bash dev_scripts/w_scannet_etf/scane101.sh
    bash dev_scripts/w_scannet_etf/scane241.sh

Tanks & Temples

train scripts
    bash dev_scripts/w_tt_ft/barn.sh
    bash dev_scripts/w_tt_ft/caterpillar.sh
    bash dev_scripts/w_tt_ft/family.sh
    bash dev_scripts/w_tt_ft/ignatius.sh
    bash dev_scripts/w_tt_ft/truck.sh

Acknowledgement

Our repo is developed based on MVSNet, NeRF, MVSNeRF, and NSVF.

Please also consider citing the corresponding papers.

The project is conducted collaboratively between Adobe Research and University of Southern California.

LICENSE

The repo is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 2.0, and is restricted to academic use only. See LICENSE.

Owner
Qiangeng Xu
Qiangeng Xu
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022