Discovering Interpretable GAN Controls [NeurIPS 2020]

Overview

GANSpace: Discovering Interpretable GAN Controls

Python 3.7 PyTorch 1.3 Open In Colab teaser

Figure 1: Sequences of image edits performed using control discovered with our method, applied to three different GANs. The white insets specify the particular edits using notation explained in Section 3.4 ('Layer-wise Edits').

GANSpace: Discovering Interpretable GAN Controls
Erik Härkönen1,2, Aaron Hertzmann2, Jaakko Lehtinen1,3, Sylvain Paris2
1Aalto University, 2Adobe Research, 3NVIDIA
https://arxiv.org/abs/2004.02546

Abstract: This paper describes a simple technique to analyze Generative Adversarial Networks (GANs) and create interpretable controls for image synthesis, such as change of viewpoint, aging, lighting, and time of day. We identify important latent directions based on Principal Components Analysis (PCA) applied in activation space. Then, we show that interpretable edits can be defined based on layer-wise application of these edit directions. Moreover, we show that BigGAN can be controlled with layer-wise inputs in a StyleGAN-like manner. A user may identify a large number of interpretable controls with these mechanisms. We demonstrate results on GANs from various datasets.

Video: https://youtu.be/jdTICDa_eAI

Setup

See the setup instructions.

Usage

This repository includes versions of BigGAN, StyleGAN, and StyleGAN2 modified to support per-layer latent vectors.

Interactive model exploration

# Explore BigGAN-deep husky
python interactive.py --model=BigGAN-512 --class=husky --layer=generator.gen_z -n=1_000_000

# Explore StyleGAN2 ffhq in W space
python interactive.py --model=StyleGAN2 --class=ffhq --layer=style --use_w -n=1_000_000 -b=10_000

# Explore StyleGAN2 cars in Z space
python interactive.py --model=StyleGAN2 --class=car --layer=style -n=1_000_000 -b=10_000
# Apply previously saved edits interactively
python interactive.py --model=StyleGAN2 --class=ffhq --layer=style --use_w --inputs=out/directions

Visualize principal components

# Visualize StyleGAN2 ffhq W principal components
python visualize.py --model=StyleGAN2 --class=ffhq --use_w --layer=style -b=10_000

# Create videos of StyleGAN wikiart components (saved to ./out)
python visualize.py --model=StyleGAN --class=wikiart --use_w --layer=g_mapping -b=10_000 --batch --video

Options

Command line paramaters:
  --model      one of [ProGAN, BigGAN-512, BigGAN-256, BigGAN-128, StyleGAN, StyleGAN2]
  --class      class name; leave empty to list options
  --layer      layer at which to perform PCA; leave empty to list options
  --use_w      treat W as the main latent space (StyleGAN / StyleGAN2)
  --inputs     load previously exported edits from directory
  --sigma      number of stdevs to use in visualize.py
  -n           number of PCA samples
  -b           override automatic minibatch size detection
  -c           number of components to keep

Reproducibility

All figures presented in the main paper can be recreated using the included Jupyter notebooks:

  • Figure 1: figure_teaser.ipynb
  • Figure 2: figure_pca_illustration.ipynb
  • Figure 3: figure_pca_cleanup.ipynb
  • Figure 4: figure_style_content_sep.ipynb
  • Figure 5: figure_supervised_comp.ipynb
  • Figure 6: figure_biggan_style_resampling.ipynb
  • Figure 7: figure_edit_zoo.ipynb

Known issues

  • The interactive viewer sometimes freezes on startup on Ubuntu 18.04. The freeze is resolved by clicking on the terminal window and pressing the control key. Any insight into the issue would be greatly appreciated!

Integrating a new model

  1. Create a wrapper for the model in models/wrappers.py using the BaseModel interface.
  2. Add the model to get_model() in models/wrappers.py.

Importing StyleGAN checkpoints from TensorFlow

It is possible to import trained StyleGAN and StyleGAN2 weights from TensorFlow into GANSpace.

StyleGAN

  1. Install TensorFlow: conda install tensorflow-gpu=1.*.
  2. Modify methods __init__(), load_model() in models/wrappers.py under class StyleGAN.

StyleGAN2

  1. Follow the instructions in models/stylegan2/stylegan2-pytorch/README.md. Make sure to use the fork in this specific folder when converting the weights for compatibility reasons.
  2. Save the converted checkpoint as checkpoints/stylegan2/<dataset>_<resolution>.pt.
  3. Modify methods __init__(), download_checkpoint() in models/wrappers.py under class StyleGAN2.

Acknowledgements

We would like to thank:

  • The authors of the PyTorch implementations of BigGAN, StyleGAN, and StyleGAN2:
    Thomas Wolf, Piotr Bialecki, Thomas Viehmann, and Kim Seonghyeon.
  • Joel Simon from ArtBreeder for providing us with the landscape model for StyleGAN.
    (unfortunately we cannot distribute this model)
  • David Bau and colleagues for the excellent GAN Dissection project.
  • Justin Pinkney for the Awesome Pretrained StyleGAN collection.
  • Tuomas Kynkäänniemi for giving us a helping hand with the experiments.
  • The Aalto Science-IT project for providing computational resources for this project.

Citation

@inproceedings{härkönen2020ganspace,
  title     = {GANSpace: Discovering Interpretable GAN Controls},
  author    = {Erik Härkönen and Aaron Hertzmann and Jaakko Lehtinen and Sylvain Paris},
  booktitle = {Proc. NeurIPS},
  year      = {2020}
}

License

The code of this repository is released under the Apache 2.0 license.
The directory netdissect is a derivative of the GAN Dissection project, and is provided under the MIT license.
The directories models/biggan and models/stylegan2 are provided under the MIT license.

Owner
Erik Härkönen
PhD student at Aalto University
Erik Härkönen
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022