Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

Overview

SegSwap

Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

[PDF] [Project page]

teaser

teaser

If our project is helpful for your research, please consider citing :

@article{shen2021learning,
  title={Learning Co-segmentation by Segment Swapping for Retrieval and Discovery},
  author={Shen, Xi and Efros, Alexei A and Joulin, Armand and Aubry, Mathieu},
  journal={arXiv},
  year={2021}

Table of Content

1. Installation

1.1. Dependencies

Our model can be learnt on a a single GPU Tesla-V100-16GB. The code has been tested in Pytorch 1.7.1 + cuda 10.2

Other dependencies can be installed via (tqdm, kornia, opencv-python, scipy) :

bash requirement.sh

1.2. Pre-trained MocoV2-resnet50 + cross-transformer (~300M)

Quick download :

cd model/pretrained
bash download_model.sh

2. Training Data Generation

2.1. Download COCO (~20G)

This command will download coco2017 training set + annotations (~20G).

cd data/COCO2017/download_coco.sh
bash download_coco.sh

2.2. Image Pairs with One Repeated Object

2.2.1 Generating 100k pairs (~18G)

This command will generate 100k image pairs with one repeated object.

cd data/
python generate_1obj.py --out-dir pairs_1obj_100k 

2.2.1 Examples of image pairs

Source Blended Obj + Background Stylised Source Stylised Background

2.2.2 Visualizing correspondences and masks of the generated pairs

This command will generate 10 pairs and visualize correspondences and masks of the pairs.

cd data/
bash vis_pair.sh

These pairs can be illustrated via vis10_1obj/vis.html

2.3. Image Pairs with Two Repeated Object

2.3.1 Generating 100k pairs (~18G)

This command will generate 100k image pairs with one repeated object.

cd data/
python generate_2obj.py --out-dir pairs_2obj_100k 

2.3.1 Examples of image pairs

Source Blended Obj + Background Stylised Source Stylised Background

2.3.2 Visualizing correspondences and masks of the generated pairs

This command will generate 10 pairs and visualize correspondences and masks of the pairs.

cd data/
bash vis_pair.sh

These pairs can be illustrated via vis10_2obj/vis.html

3. Evaluation

3.1 One-shot Art Detail Detection on Brueghel Dataset

3.1.1 Visual results: top-3 retrieved images

teaser

3.1.2 Data

Brueghel dataset has been uploaded in this repo

3.1.3 Quantitative results

The following command conduct evaluation on Brueghel with pre-trained cross-transformer:

cd evalBrueghel
python evalBrueghel.py --out-coarse out_brueghel.json --resume-pth ../model/hard_mining_neg5.pth --label-pth ../data/Brueghel/brueghelTest.json

Note that this command will save the features of Brueghel(~10G).

3.2 Place Recognition on Tokyo247 Dataset

3.2.1 Visual results: top-3 retrieved images

teaser

3.2.2 Data

Download Tokyo247 from its project page

Download the top-100 results used by patchVlad(~1G).

The data needs to be organised:

./SegSwap/data/Tokyo247
                    ├── query/
                        ├── 247query_subset_v2/
                    ├── database/
...

./SegSwap/evalTokyo
                    ├── top100_patchVlad.npy

3.2.3 Quantitative results

The following command conduct evaluation on Tokyo247 with pre-trained cross-transformer:

cd evalTokyo
python evalTokyo.py --qry-dir ../data/Tokyo247/query/247query_subset_v2 --db-dir ../data/Tokyo247/database --resume-pth ../model/hard_mining_neg5.pth

3.3 Place Recognition on Pitts30K Dataset

3.3.1 Visual results: top-3 retrieved images

teaser

3.3.2 Data

Download Pittsburgh dataset from its project page

Download the top-100 results used by patchVlad (~4G).

The data needs to be organised:

./SegSwap/data/Pitts
                ├── queries_real/
...

./SegSwap/evalPitts
                    ├── top100_patchVlad.npy

3.3.3 Quantitative results

The following command conduct evaluation on Pittsburgh30K with pre-trained cross-transformer:

cd evalPitts
python evalPitts.py --qry-dir ../data/Pitts/queries_real --db-dir ../data/Pitts --resume-pth ../model/hard_mining_neg5.pth

3.4 Discovery on Internet Dataset

3.4.1 Visual results

teaser

3.4.2 Data

Download Internet dataset from its project page

We provide a script to quickly download and preprocess the data (~400M):

cd data/Internet
bash download_int.sh

The data needs to be organised:

./SegSwap/data/Internet
                ├── Airplane100
                    ├── GroundTruth                
                ├── Horse100
                    ├── GroundTruth                
                ├── Car100
                    ├── GroundTruth                                

3.4.3 Quantitative results

The following commands conduct evaluation on Internet with pre-trained cross-transformer

cd evalInt
bash run_pair_480p.sh
bash run_best_only_cycle.sh

4. Training

Stage 1: standard training

Supposing that the generated pairs are saved in ./SegSwap/data/pairs_1obj_100k and ./SegSwap/data/pairs_2obj_100k.

Training command can be found in ./SegSwap/train/run.sh.

Note that this command should be able to be launched on a single GPU with 16G memory.

cd train
bash run.sh

Stage 2: hard mining

In train/run_hardmining.sh, replacing --resume-pth by the model trained in the 1st stage, than running:

cd train
bash run_hardmining.sh

5. Acknowledgement

We appreciate helps from :

Part of code is borrowed from our previous projects: ArtMiner and Watermark

6. ChangeLog

  • 21/10/21, model, evaluation + training released

7. License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including Kornia, Pytorch, and uses datasets which each have their own respective licenses that must also be followed.

Owner
xshen
Ph.D, Computer Vision, Deep Learning.
xshen
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023