Simple tutorials on Pytorch DDP training

Overview

pytorch-distributed-training

Distribute Dataparallel (DDP) Training on Pytorch

Features

Good Notes

分享一些网上优质的笔记

TODO

  • 完成DP和DDP源码解读笔记(当前进度50%)
  • 修改代码细节, 复现实验结果

Quick start

想直接运行查看结果的可以执行以下命令, 注意一定要用--ip--port来指定主机的ip地址以及空闲的端口,否则可能无法运行

$ python dataparallel.py --gpu 0,1,2,3
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 distributed.py
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_mp.py
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_apex.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址

  • --port=int, e.g --port=23456 来指定启动端口号

  • --batch_size=int, e.g --batch_size=128 设定训练batch_size

  • distributed_gradient_accumulation.py

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_apex.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号
  • --grad_accu_steps=int, e.g --grad_accu_steps=4' 来指定gradient_step

Comparison

结果不够准确,GPU状态不同结果可能差异较大

默认情况下都使用SyncBatchNorm, 这会导致执行速度变慢一些,因为需要增加进程之间的通讯来计算BatchNorm, 但有利于保证准确率

Concepts

  • apex
  • DP: DataParallel
  • DDP: DistributedDataParallel

Environments

  • 4 × 2080Ti
model dataset training method time(seconds/epoch) Top-1 accuracy
resnet18 cifar100 DP 20s
resnet18 cifar100 DP+apex 18s
resnet18 cifar100 DDP 16s
resnet18 cifar100 DDP+apex 14.5s

Basic Concept

  • group: 表示进程组,默认情况下只有一个进程组。
  • world size: 全局进程个数
    • 比如16张卡单卡单进程: world size = 16
    • 8卡单进程: world size = 1
    • 只有当连接的进程数等于world size, 程序才会执行
  • rank: 进程序号,用于进程间通讯,表示进程优先级,rank=0表示主进程
  • local_rank: 进程内,GPU编号,非显示参数,由torch.distributed.launch内部指定,rank=3, local_rank=0 表示第3个进程的第1GPU

Usage 单机多卡

1. 获取当前进程的index

pytorch可以通过torch.distributed.lauch启动器,在命令行分布式地执行.py文件, 在执行的过程中会将当前进程的index通过参数传递给python

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int,
                    help='node rank for distributed training')
args = parser.parse_args()
print(args.local_rank)

2. 定义 main_worker 函数

主要的训练流程都写在main_worker函数中,main_worker需要接受三个参数(最后一个参数optional):

def main_worker(local_rank, nprocs, args):
    training...
  • local_rank: 接受当前进程的rank值,在一机多卡的情况下对应使用的GPU号
  • nprocs: 进程数量
  • args: 自己定义的额外参数

main_worker,相当于你每个进程需要运行的函数(每个进程执行的函数内容是一致的,只不过传入的local_rank不一样)

3. main_worker函数中的整体流程

main_worker函数中完整的训练流程

import torch
import torch.distributed as dist
import torch.backends.cudnn as cudnn
def main_worker(local_rank, nprocs, args):
    args.local_rank = local_rank
    # 分布式初始化,对于每个进程来说,都需要进行初始化
    cudnn.benchmark = True
    dist.init_process_group(backend='nccl', init_method='tcp://ip:port', world_size=nprocs, rank=local_rank)
    # 模型、损失函数、优化器定义
    model = ...
    criterion = ...
    optimizer = ...
    # 设置进程对应使用的GPU
    torch.cuda.set_device(local_rank)
    model.cuda(local_rank)
    # 使用分布式函数定义模型
    model = model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
    
    # 数据集的定义,使用 DistributedSampler
    mini_batch_size = batch_size / nprocs # 手动划分 batch_size to mini-batch_size
    train_dataset = ...
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=mini_batch_size, num_workers=..., pin_memory=..., 
                                              sampler=train_sampler)
    
    test_dataset = ...
    test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
    testloader = torch.utils.data.DataLoader(train_dataset, batch_size=mini_batch_size, num_workers=..., pin_memory=..., 
                                             sampler=test_sampler) 
    
    # 正常的 train 流程
    for epoch in range(300):
       model.train()
       for batch_idx, (images, target) in enumerate(trainloader):
          images = images.cuda(non_blocking=True)
          target = target.cuda(non_blocking=True)
          ...
          pred = model(images)
          loss = loss_function(pred, target)
          ...
          optimizer.zero_grad()
          loss.backward()
          optimizer.step()

4. 定义main函数

import argparse
import torch
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--batch_size','--batch-size', default=256, type=int)
parser.add_argument('--lr', default=0.1, type=float)

def main_worker(local_rank, nprocs, args):
    ...

def main():
    args = parser.parse_args()
    args.nprocs = torch.cuda.device_count()
    # 执行 main_worker
    main_worker(args.local_rank, args.nprocs, args)

if __name__ == '__main__':
    main()

5. Command Line 启动

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 distributed.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号

参数说明:

  • --nnodes 表示机器的数量
  • --node_rank 表示当前的机器
  • --nproc_per_node 表示每台机器上的进程数量

参考 distributed.py

6. torch.multiprocessing

使用torch.multiprocessing来解决进程自发控制可能产生问题,这种方式比较稳定,推荐使用

import argparse
import torch
import torch.multiprocessing as mp

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--batch_size','--batch-size', default=256, type=int)
parser.add_argument('--lr', default=0.1, type=float)

def main_worker(local_rank, nprocs, args):
    ...

def main():
    args = parser.parse_args()
    args.nprocs = torch.cuda.device_count()
    # 将 main_worker 放入 mp.spawn 中
    mp.spawn(main_worker, nprocs=args.nprocs, args=(args.nprocs, args))

if __name__ == '__main__':
    main()

参考 distributed_mp.py 启动方式如下:

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_mp.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号

Implemented Work

参考的文章如下(如果有文章没有引用,但是内容差不多的,可以提issue给我,我会补上,实在抱歉):

Owner
Ren Tianhe
Ren Tianhe
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022