SVG Icon processing tool for C++

Related tags

Deep Learningbawr
Overview

BAWR

This is a tool to automate the icons generation from sets of svg files into fonts and atlases.

The main purpose of this tool is to add it to the build process of your c++ project and let it do all the work, then you can use your svg icons as fonts or as spritesheets.

The project url is: https://github.com/mnesarco/bawr This project is based on a previous project: https://github.com/mnesarco/ff-batch

Features

  • Generate TrueType fonts from svg collections.
  • Generate png textures from svg collections.
  • Embed binaries into c++ sources ready to link.
  • Generate ImGui Font Loaders (c++). (howto)
  • Generate c++ Atlas Maps.
  • Generate c++ Font constants as Macros and/or as const/constexpr.
  • Apply transformation to svg files during the generation.
    • Textual transformations
    • Font forge supported transformations

Requirements

  • Python 3.6+
  • FontForge 20170924+
  • Inkscape 1.0+

Install

Build from sources

git clone https:://github.com/mnesarco/bawr.git
cd bawr

python3 -m pip install --upgrade build
python3 -m pip install wheel

python3 -m build 
python3 -m pip install dist/bawr-0.0.3-py3-none-any.whl

Or from pypi:

python3 -m pip install bawr

Terminology

Concept Description
Svg Icon It is just a file in .svg format. It must be a square.
Icon set or Collection It is a folder with svg icons
Configuration file It is a python file with all the options to generate your files. By convention it is called config.py

Usage

  1. Create a folder
  2. Put a file named config.py (you can copy the one from examples dir https://github.com/mnesarco/bawr/tree/main/examples)
  3. Add folders with svg icons
  4. Adjust the configuration (edit config.py)
  5. Call bawr
cd examples
python3 -m bawr.tool

Examples

You can use the examples dir (https://github.com/mnesarco/bawr/tree/main/examples) as a template for your project:

examples/
├── config.py
├── icons/
└── bootstrap-icons/

Result (generated files):

examples/build/
├── atlas_cells.hpp
├── atlas.cpp
├── atlas.hpp
├── atlas.png
├── my-icons_codes.hpp
├── my-icons.cpp
├── my-icons.hpp
├── my-icons_loader.hpp
└── my-icons.ttf

Configuration (config.py)

#------------------------------------------------------------------------------
# Import all required stuff:
#------------------------------------------------------------------------------

from bawr.config import *

#------------------------------------------------------------------------------
# Define an environment (Use the name that you want, but extend Environment):
#------------------------------------------------------------------------------

class Env( Environment ):

    # [Optional] FONTFORGE_PATH = Path to fontforge executable, deduced if it is in PATH
    # FONTFORGE_PATH = ...

    # [Optional] INKSCAPE_PATH = Path to inkscape executable, deduced if it is in PATH
    # INKSCAPE_PATH = ...   

    # [Optional] BAWR_OUTPUT_DIR = Where all the output will be generated. Default = ./build
    # BAWR_OUTPUT_DIR = ...

    # [Optional] BAWR_SOURCE_DIR = Where all the icon folders will be found. Default = ./
    #  BAWR_SOURCE_DIR = ...

    pass

#------------------------------------------------------------------------------
# Define your icon sets (extend IconSet):
#------------------------------------------------------------------------------

class BootstrapIcons( IconSet ):

    # [Mandatory] src = directory name (which contains svg icons)
    src = 'bootstrap-icons'

    # [Optional] select = selection of icons from the directory: list( tuple(file-name, glyph-name) )
    select = [
        ('info-circle',              'infoCircle'),
        ('file-earmark',             'fileEarmark'),
        ('folder2-open',             'folderOpen'),
        ('hdd',                      'save'),
        ('file-earmark-arrow-up',    'fileImport'),
        ('file-earmark-arrow-down',  'fileExport'),
        ('folder',                   'folder'),
        ('sliders',                  'sliders'),
        ('eye',                      'eye'),
        ('layers',                   'layers'),
    ]

    # [Optional] options = Special options for generators
    options = {
        "font_transformation": [('scale', 0.75, 0.75)],
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    "currentColor": "#ffffff",
                    'width="1em"': 'width="16"',
                    'height="1em"': 'height="16"',
                }            
            )
        ],
        "atlas_margin": 0.0625
    }

# Another icon set with different options

class MyIcons( IconSet ):

    src = 'icons'

    options = {
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    'fill:#000000': "fill:#ffffff",
                    'stroke:#000000': 'stroke:#ffffff',
                }            
            )
        ]
    }

#------------------------------------------------------------------------------
# [Optional]
# Define Font generator to generate truetype fonts using FontForge
# (extend Font)
#------------------------------------------------------------------------------

class MyFont( Font ):

    # Generated font copyright notice [Mandatory]
    copyright = "Copyright 2020 Frank D. Martinez M."

    # Font name [Mandatory]
    name = "my-icons"

    # Font family [Mandatory]
    family = "my-icons"

    # First font glyph code [Optional] (default = 0xe000)
    # start_code = 0xe000

    # List ot tuple of the icon sets included in this font [Mandatory]
    collections = (BootstrapIcons, MyIcons)

    # Global font transformation [Optiona] (See: Font transformations)
    # transformation = []

    # Output format [Optional] (default = ['ttf'])
    # output_formats = ['ttf']

    # Verbose output. Shows glyph generation details [Optional] (default = False)
    # verbose = False


#------------------------------------------------------------------------------
# [Optional]
# You can generate a C++ font header file with glyph codes ready to use in C++.
# (extend CppFontHeader)
#------------------------------------------------------------------------------

class MyCppFontH( CppFontHeader ):

    # [Mandatory] Reference to the font generator to use
    source = MyFont    

    # [Optional] Generate constexpr values (default = false)
    constexpr = True

    # [Optional] name of the generated c++ file (default = source.name)
    # name = ...

    # [Optional] namespace of the generated c++ file (default = icons)
    # namespace = ...

    # [Optional] Generate macros (default = True)
    # macros = ...

    # [Optional] Prefix for all macros (default = Icon_)
    # macro_prefix = ...


#------------------------------------------------------------------------------
# [Optional]
# You can Embed your font binary into a C++ source file to be linked.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontEmbed( CppEmbedded ):

    # [Mandatory] Reference to the binary file to embed
    source = "${BAWR_OUTPUT_DIR}/my-icons.ttf"

    # [Optional] name prefix for the generated files (default = source name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...


#------------------------------------------------------------------------------
# [Optional]
# You can generate C++ code to load your font into Dear ImGui.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontImGui( ImGuiFontLoader ):

    # [Mandatory] reference to the font
    font = MyFont

    # [Mandatory] reference to the font header
    header = MyCppFontH    

    # [Mandatory] reference to the embedded binary
    data = MyCppFontEmbed

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...

#------------------------------------------------------------------------------
# [Optional]
# You can generate an optimized png atlas with all your icons in different sizes.
# (extend Atlas)
#------------------------------------------------------------------------------

class MyAtlas( Atlas ):

    # [Optional] width of the atlas image (default = 512)
    width = 512

    # [Mandatory] sizes of the icons to be generated and included in the atlas
    sizes = (16, 32, 64)

    # [Mandatory] References to collections (icon sets) to be included
    collections = (BootstrapIcons, MyIcons)

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

# [Optional] Embed the Atlas png into a C++ source.
class MyCppAtlasEmbed( CppEmbedded ):
    source = "${BAWR_OUTPUT_DIR}/atlas.png"

#------------------------------------------------------------------------------
# [Optional]
# Generate a C++ header file with the atlas cells (frames) to be used in your code.
# (extend CppAtlasHeader)
#------------------------------------------------------------------------------

class MyAtlasHeader( CppAtlasHeader ):
    source = MyAtlas

How to use with Dear ImGui:

https://github.com/mnesarco/bawr/blob/main/ImGui.md

What is in the name

BAWR in honor of Bertrand Arthur William Russell, a great Logician, Mathematician and Philosopher of the IX and XX centuries.

Owner
Frank David Martínez M
Frank David Martínez M
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022