SVG Icon processing tool for C++

Related tags

Deep Learningbawr
Overview

BAWR

This is a tool to automate the icons generation from sets of svg files into fonts and atlases.

The main purpose of this tool is to add it to the build process of your c++ project and let it do all the work, then you can use your svg icons as fonts or as spritesheets.

The project url is: https://github.com/mnesarco/bawr This project is based on a previous project: https://github.com/mnesarco/ff-batch

Features

  • Generate TrueType fonts from svg collections.
  • Generate png textures from svg collections.
  • Embed binaries into c++ sources ready to link.
  • Generate ImGui Font Loaders (c++). (howto)
  • Generate c++ Atlas Maps.
  • Generate c++ Font constants as Macros and/or as const/constexpr.
  • Apply transformation to svg files during the generation.
    • Textual transformations
    • Font forge supported transformations

Requirements

  • Python 3.6+
  • FontForge 20170924+
  • Inkscape 1.0+

Install

Build from sources

git clone https:://github.com/mnesarco/bawr.git
cd bawr

python3 -m pip install --upgrade build
python3 -m pip install wheel

python3 -m build 
python3 -m pip install dist/bawr-0.0.3-py3-none-any.whl

Or from pypi:

python3 -m pip install bawr

Terminology

Concept Description
Svg Icon It is just a file in .svg format. It must be a square.
Icon set or Collection It is a folder with svg icons
Configuration file It is a python file with all the options to generate your files. By convention it is called config.py

Usage

  1. Create a folder
  2. Put a file named config.py (you can copy the one from examples dir https://github.com/mnesarco/bawr/tree/main/examples)
  3. Add folders with svg icons
  4. Adjust the configuration (edit config.py)
  5. Call bawr
cd examples
python3 -m bawr.tool

Examples

You can use the examples dir (https://github.com/mnesarco/bawr/tree/main/examples) as a template for your project:

examples/
├── config.py
├── icons/
└── bootstrap-icons/

Result (generated files):

examples/build/
├── atlas_cells.hpp
├── atlas.cpp
├── atlas.hpp
├── atlas.png
├── my-icons_codes.hpp
├── my-icons.cpp
├── my-icons.hpp
├── my-icons_loader.hpp
└── my-icons.ttf

Configuration (config.py)

#------------------------------------------------------------------------------
# Import all required stuff:
#------------------------------------------------------------------------------

from bawr.config import *

#------------------------------------------------------------------------------
# Define an environment (Use the name that you want, but extend Environment):
#------------------------------------------------------------------------------

class Env( Environment ):

    # [Optional] FONTFORGE_PATH = Path to fontforge executable, deduced if it is in PATH
    # FONTFORGE_PATH = ...

    # [Optional] INKSCAPE_PATH = Path to inkscape executable, deduced if it is in PATH
    # INKSCAPE_PATH = ...   

    # [Optional] BAWR_OUTPUT_DIR = Where all the output will be generated. Default = ./build
    # BAWR_OUTPUT_DIR = ...

    # [Optional] BAWR_SOURCE_DIR = Where all the icon folders will be found. Default = ./
    #  BAWR_SOURCE_DIR = ...

    pass

#------------------------------------------------------------------------------
# Define your icon sets (extend IconSet):
#------------------------------------------------------------------------------

class BootstrapIcons( IconSet ):

    # [Mandatory] src = directory name (which contains svg icons)
    src = 'bootstrap-icons'

    # [Optional] select = selection of icons from the directory: list( tuple(file-name, glyph-name) )
    select = [
        ('info-circle',              'infoCircle'),
        ('file-earmark',             'fileEarmark'),
        ('folder2-open',             'folderOpen'),
        ('hdd',                      'save'),
        ('file-earmark-arrow-up',    'fileImport'),
        ('file-earmark-arrow-down',  'fileExport'),
        ('folder',                   'folder'),
        ('sliders',                  'sliders'),
        ('eye',                      'eye'),
        ('layers',                   'layers'),
    ]

    # [Optional] options = Special options for generators
    options = {
        "font_transformation": [('scale', 0.75, 0.75)],
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    "currentColor": "#ffffff",
                    'width="1em"': 'width="16"',
                    'height="1em"': 'height="16"',
                }            
            )
        ],
        "atlas_margin": 0.0625
    }

# Another icon set with different options

class MyIcons( IconSet ):

    src = 'icons'

    options = {
        "atlas_preprocessors": [
            RegexReplacePreprocessor(
                {
                    'fill:#000000': "fill:#ffffff",
                    'stroke:#000000': 'stroke:#ffffff',
                }            
            )
        ]
    }

#------------------------------------------------------------------------------
# [Optional]
# Define Font generator to generate truetype fonts using FontForge
# (extend Font)
#------------------------------------------------------------------------------

class MyFont( Font ):

    # Generated font copyright notice [Mandatory]
    copyright = "Copyright 2020 Frank D. Martinez M."

    # Font name [Mandatory]
    name = "my-icons"

    # Font family [Mandatory]
    family = "my-icons"

    # First font glyph code [Optional] (default = 0xe000)
    # start_code = 0xe000

    # List ot tuple of the icon sets included in this font [Mandatory]
    collections = (BootstrapIcons, MyIcons)

    # Global font transformation [Optiona] (See: Font transformations)
    # transformation = []

    # Output format [Optional] (default = ['ttf'])
    # output_formats = ['ttf']

    # Verbose output. Shows glyph generation details [Optional] (default = False)
    # verbose = False


#------------------------------------------------------------------------------
# [Optional]
# You can generate a C++ font header file with glyph codes ready to use in C++.
# (extend CppFontHeader)
#------------------------------------------------------------------------------

class MyCppFontH( CppFontHeader ):

    # [Mandatory] Reference to the font generator to use
    source = MyFont    

    # [Optional] Generate constexpr values (default = false)
    constexpr = True

    # [Optional] name of the generated c++ file (default = source.name)
    # name = ...

    # [Optional] namespace of the generated c++ file (default = icons)
    # namespace = ...

    # [Optional] Generate macros (default = True)
    # macros = ...

    # [Optional] Prefix for all macros (default = Icon_)
    # macro_prefix = ...


#------------------------------------------------------------------------------
# [Optional]
# You can Embed your font binary into a C++ source file to be linked.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontEmbed( CppEmbedded ):

    # [Mandatory] Reference to the binary file to embed
    source = "${BAWR_OUTPUT_DIR}/my-icons.ttf"

    # [Optional] name prefix for the generated files (default = source name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...


#------------------------------------------------------------------------------
# [Optional]
# You can generate C++ code to load your font into Dear ImGui.
# (extend CppEmbedded)
#------------------------------------------------------------------------------

class MyCppFontImGui( ImGuiFontLoader ):

    # [Mandatory] reference to the font
    font = MyFont

    # [Mandatory] reference to the font header
    header = MyCppFontH    

    # [Mandatory] reference to the embedded binary
    data = MyCppFontEmbed

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

    # [Optional] namespace for the generated files (default = icons)
    # namespace = ...

#------------------------------------------------------------------------------
# [Optional]
# You can generate an optimized png atlas with all your icons in different sizes.
# (extend Atlas)
#------------------------------------------------------------------------------

class MyAtlas( Atlas ):

    # [Optional] width of the atlas image (default = 512)
    width = 512

    # [Mandatory] sizes of the icons to be generated and included in the atlas
    sizes = (16, 32, 64)

    # [Mandatory] References to collections (icon sets) to be included
    collections = (BootstrapIcons, MyIcons)

    # [Optional] name prefix for the generated files (default = font.name)
    # name = ...

# [Optional] Embed the Atlas png into a C++ source.
class MyCppAtlasEmbed( CppEmbedded ):
    source = "${BAWR_OUTPUT_DIR}/atlas.png"

#------------------------------------------------------------------------------
# [Optional]
# Generate a C++ header file with the atlas cells (frames) to be used in your code.
# (extend CppAtlasHeader)
#------------------------------------------------------------------------------

class MyAtlasHeader( CppAtlasHeader ):
    source = MyAtlas

How to use with Dear ImGui:

https://github.com/mnesarco/bawr/blob/main/ImGui.md

What is in the name

BAWR in honor of Bertrand Arthur William Russell, a great Logician, Mathematician and Philosopher of the IX and XX centuries.

Owner
Frank David Martínez M
Frank David Martínez M
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023