End-to-end speech secognition toolkit

Overview

End-to-end speech secognition toolkit

This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9).
This is the official implementation of paper:
Consistent Training and Decoding For End-to-end Speech Recognition Using Lattice-free MMI
This is also the official implementation of paper:
Improving Mandarin End-to-End Speech Recognition with Word N-gram Language Model
We achieve state-of-the-art results on two of the most popular results in Aishell-1 and AIshell-2 Mandarin datasets.
Please feel free to change / modify the code as you like. :)

Update

  • 2021/12/29: Release the first version, which contains all MMI-related features, including MMI training criteria, MMI Prefix Score (for attention-based encoder-decoder, AED) and MMI Alignment Score (For neural transducer, NT).
  • 2022/1/6: Release the word-level N-gram LM scorer.

Environment:

The main dependencies of this code can be divided into three part: kaldi, espnet and k2.

  1. kaldi is mainly used for feature extraction. To install kaldi, please follow the instructions here.
  2. Espnet is a open-source end-to-end speech recognition toolkit. please follow the instructions here to install its environment.
    2.1. Pytorch, cudatoolkit, along with many other dependencies will be install automatically during this process. 2.2. If you are going to use NT models, you are recommend to install a RNN-T warpper. Please run ${ESPNET_ROOT}/tools/installer/install_warp-transducer.sh
    2.3. Once you have installed the espnet envrionment successfully, please run pip uninstall espnet to remove the espnet library. So our code will be used.
    2.4. Also link the kaldi in ${ESPNET_ROOT}: ln -s ${KALDI-ROOT} ${ESPNET_ROOT}
  3. k2 is a python-based FST library. Please follow the instructions here to install it. GPU version is required.
    3.1. To use word N-gram LM, please also install kaldilm
  4. There might be some dependency conflicts during building the environment. We report ours below as a reference:
    4.1 OS: CentOS 7; GCC 7.3.1; Python 3.8.10; CUDA 10.1; Pytorch 1.7.1; k2-fsa 1.2 (very old for now)
    4.2 Other python libraries are in requirement.txt (It is not recommend to use this file to build the environment directly).

Results

Currently we have released examples on Aishell-1 and Aishell-2 datasets.

With MMI training & decoding methods and the word-level N-gram LM. We achieve results on Aishell-1 and Aishell-2 as below. All results are in CER%

Test set Aishell-1-dev Aishell-1-test Aishell-2-ios Aishell-2-android Aishell-2-mic
AED 4.73 5.32 5.73 6.56 6.53
AED + MMI + Word Ngram 4.08 4.45 5.26 6.22 5.92
NT 4.41 4.81 5.70 6.75 6.58
NT + MMI + Word Ngram 3.86 4.18 5.06 6.08 5.98

(example on Librispeech is not fully prepared)

Get Start

Take Aishell-1 as an example. Working process for other examples are very similar.
Prepare data and LMs

cd ${ESPNET_ROOT}/egs/aishell1
source path.sh
bash prepare.sh # prepare the data

split the json file of training data for each GPU. (we use 8GPUs)

python3 espnet_utils/splitjson.py -p 
   
     dump/train_sp/deltafalse/data.json

   

Training and decoding for NT model:

bash nt.sh      # to train the nueal transducer model

Training and decoding for AED model:

bash aed.sh     # or to train the attention-based encoder-decoder model

Several Hint:

  1. Please change the paths in path.sh accordingly before you start
  2. Please change the data to config your data path in prepare.sh
  3. Our code runs in DDP style. Before you start, you need to set them manually. We assume Pytorch distributed API works well on your machine.
export HOST_GPU_NUM=x       # number of GPUs on each host
export HOST_NUM=x           # number of hosts
export NODE_NUM=x           # number of GPUs in total (on all hosts)
export INDEX=x              # index of this host
export CHIEF_IP=xx.xx.xx.xx # IP of the master host
  1. Multiple choices are available during decoding (we take aed.sh as an example, but the usage of nt.sh is the same).
    To use the MMI-related scorers, you need train the model with MMI auxiliary criterion;

To use MMI Prefix Score (in AED) or MMI Alignment score (in NT):

bash aed.sh --stage 2 --mmi-weight 0.2

To use any external LM, you need to train them in advance (as implemented in prepare.sh)

To use word-level N-gram LM:

bash aed.sh --stage 2 --word-ngram-weight 0.4

To use character-level N-gram LM:

bash aed.sh --stage 2 --ngram-weight 1.0

To use neural network LM:

bash aed.sh --stage 2 --lm-weight 1.0

Reference

kaldi: https://github.com/kaldi-asr/kaldi
Espent: https://github.com/espnet/espnet
k2-fsa: https://github.com/k2-fsa/k2

Citations

@article{tian2021consistent,  
  title={Consistent Training and Decoding For End-to-end Speech Recognition Using Lattice-free MMI},  
  author={Tian, Jinchuan and Yu, Jianwei and Weng, Chao and Zhang, Shi-Xiong and Su, Dan and Yu, Dong and Zou, Yuexian},  
  journal={arXiv preprint arXiv:2112.02498},  
  year={2021}  
}  

@misc{tian2022improving,
      title={Improving Mandarin End-to-End Speech Recognition with Word N-gram Language Model}, 
      author={Jinchuan Tian and Jianwei Yu and Chao Weng and Yuexian Zou and Dong Yu},
      year={2022},
      eprint={2201.01995},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Authorship

Jinchuan Tian; [email protected] or [email protected]
Jianwei Yu; [email protected] (supervisor)
Chao Weng; [email protected]
Yuexian Zou; [email protected]

Owner
Jinchuan Tian
Graduate student @ Peking University, Shenzhen; Research intern @ Tencent AI LAB;
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022