Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Related tags

Deep LearningLPIGAC
Overview

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Code for our paper "Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training" (IEEE BIBM 2021)

Requirements

The code has been tested running under Python 3.7.4, with the following packages and their dependencies installed:

numpy==1.16.5
pytorch==1.3.1
sklearn==0.21.3

Usage

git clone https://github.com/zhanglabNKU/LPIGAC.git
cd LPIGAC
python fivefoldcv.py

Options

We adopt an argument parser by package argparse in Python, and the options for running code are defined as follow:

parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=1, help='Random seed.')
parser.add_argument('--epochs', type=int, default=300,
                    help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,
                    help='Learning rate.')
parser.add_argument('--weight_decay', type=float, default=1e-7,
                    help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=144,                    help='Dimension of representations')
parser.add_argument('--alpha', type=float, default=0.5,
                    help='Weight between lncRNA space and protein space')
parser.add_argument('--beta', type=float, default=1.0,
                    help='Hyperparameter beta')

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

Data

Files of data are listed as follow:

  • LncRNAName.txt includes the names of all lncRNAs.
  • ProteinName.txt includes the names of all proteins.
  • interaction.txt is a matrix Y that shows lncRNA-protein associations. Y[i,j]=1 if lncRNA i and protein j are known to be associated, otherwise 0.
  • protfeat.txt is the feature matrix of proteins.
  • rnafeat.txt is the feature matrix of lncRNAs.

Citation

@inproceedings{jin2021lpigac,
    author = {Jin, Chen and Shi, Zhuangwei and Zhang, Han and Yin, Yanbin},
    title = {Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training},
    year = {2021},
    booktitle = {IEEE International Conference on Bioinformatics and Biomedicine (BIBM)},
}
Owner
zhanglabNKU
Data Mining Lab. Prof. Han Zhang
zhanglabNKU
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022