Learning Versatile Neural Architectures by Propagating Network Codes

Related tags

Deep LearningNCP
Overview

Learning Versatile Neural Architectures by Propagating Network Codes

Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang, Ping Luo

diagram

Introduction

This work includes:
(1) NAS-Bench-MR, a NAS benchmark built on four challenging datasets under practical training settings for learning task-transferable architectures.
(2) An efficient predictor-based algorithm Network Coding Propagation (NCP), which back-propagates the gradients of neural predictors to directly update architecture codes along desired gradient directions for various objectives.

This framework is implemented and tested with Ubuntu/Mac OS, CUDA 9.0/10.0, Python 3, Pytorch 1.3-1.6, NVIDIA Tesla V100/CPU.

Dataset

We build our benchmark on four computer vision tasks, i.e., image classification (ImageNet), semantic segmentation (CityScapes), 3D detection (KITTI), and video recognition (HMDB51). Totally 9 different settings are included, as shown in the data/*/trainval.pkl folders.

Note that each .pkl file contains more than 2500 architectures, and their corresponding evaluation results under multiple metrics. The original training logs and checkpoints (including model weights and optimizer data) will be uploaded to Google drive (more than 4T). We will share the download link once the upload is complete.

Quick start

First, train the predictor

python3 tools/train_predictor.py  # --cfg configs/seg.yaml

Then, edit architecture based on desired gradients

python3 tools/ncp.py  # --cfg configs/seg.yaml

Examples

  • An example in NAS-Bench-MR (Seg):
{'mIoU': 70.57,
 'mAcc': 80.07,
 'aAcc': 95.29,
 'input_channel': [16, 64],
 # [num_branches, [num_convs], [num_channels]]
 'network_setting': [[1, [3], [128]],
  [2, [3, 3], [32, 48]],
  [2, [3, 3], [32, 48]],
  [2, [3, 3], [32, 48]],
  [3, [2, 3, 2], [16, 32, 16]],
  [3, [2, 3, 2], [16, 32, 16]],
  [4, [2, 4, 1, 1], [96, 112, 48, 80]]],
 'last_channel': 112,
 # [num_branches, num_block1, num_convs1, num_channels1, ..., num_block4, num_convs4, num_channels4, last_channel]
 'embedding': [16, 64, 1, 3, 128, 3, 3, 3, 32, 48, 2, 2, 3, 2, 16, 32, 16, 1, 2, 4, 1, 1, 96, 112, 48, 80]
}
  • Load Datasets:
import pickle
exps = pickle.load(open('data/seg/trainval.pkl', 'rb'))
# Then process each item in exps
  • Load Model / Get Params and Flops (based on the thop library):
import torch
from thop import profile
from models.supernet import MultiResolutionNet

# Get model using input_channel & network_setting & last_channel
model = MultiResolutionNet(input_channel=[16, 64],
                           network_setting=[[1, [3], [128]],
                            [2, [3, 3], [32, 48]],
                            [2, [3, 3], [32, 48]],
                            [2, [3, 3], [32, 48]],
                            [3, [2, 3, 2], [16, 32, 16]],
                            [3, [2, 3, 2], [16, 32, 16]],
                            [4, [2, 4, 1, 1], [96, 112, 48, 80]]],
                          last_channel=112)

# Get Flops and Parameters
input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ))  

structure

Data Format

Each code in data/search_list.txt denotes an architecture. It can be load in our supernet as follows:

  • Code2Setting
params = '96_128-1_1_1_48-1_2_1_1_128_8-1_3_1_1_1_128_128_120-4_4_4_4_4_4_128_128_128_128-64'
embedding = [int(item) for item in params.replace('-', '_').split('_')]

embedding = [ 96, 128,   1,   1,  48,   1,   1,   1, 128,   8,   1,   1,
           1,   1, 128, 128, 120,   4,   4,   4,   4,   4, 128, 128,
         128, 128, 64]
input_channels = embedding[0:2]
block_1 = embedding[2:3] + [1] + embedding[3:5]
block_2 = embedding[5:6] + [2] + embedding[6:10]
block_3 = embedding[10:11] + [3] + embedding[11:17]
block_4 = embedding[17:18] + [4] + embedding[18:26]
last_channels = embedding[26:27]
network_setting = []
for item in [block_1, block_2, block_3, block_4]:
    for _ in range(item[0]):
        network_setting.append([item[1], item[2:-int(len(item) / 2 - 1)], item[-int(len(item) / 2 - 1):]])

# network_setting = [[1, [1], [48]], 
#  [2, [1, 1], [128, 8]],
#  [3, [1, 1, 1], [128, 128, 120]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]]]
# input_channels = [96, 128]
# last_channels = [64]
  • Setting2Code
input_channels = [str(item) for item in input_channels]
block_1 = [str(item) for item in block_1]
block_2 = [str(item) for item in block_2]
block_3 = [str(item) for item in block_3]
block_4 = [str(item) for item in block_4]
last_channels = [str(item) for item in last_channels]

params = [input_channels, block_1, block_2, block_3, block_4, last_channels]
params = ['_'.join(item) for item in params]
params = '-'.join(params)
# params
# 96_128-1_1_1_48-1_2_1_1_128_8-1_3_1_1_1_128_128_120-4_4_4_4_4_4_128_128_128_128-64'

License

For academic use, this project is licensed under the 2-clause BSD License. For commercial use, please contact the author.

Owner
Mingyu Ding
Mingyu Ding
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022