Learning Versatile Neural Architectures by Propagating Network Codes

Related tags

Deep LearningNCP
Overview

Learning Versatile Neural Architectures by Propagating Network Codes

Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang, Ping Luo

diagram

Introduction

This work includes:
(1) NAS-Bench-MR, a NAS benchmark built on four challenging datasets under practical training settings for learning task-transferable architectures.
(2) An efficient predictor-based algorithm Network Coding Propagation (NCP), which back-propagates the gradients of neural predictors to directly update architecture codes along desired gradient directions for various objectives.

This framework is implemented and tested with Ubuntu/Mac OS, CUDA 9.0/10.0, Python 3, Pytorch 1.3-1.6, NVIDIA Tesla V100/CPU.

Dataset

We build our benchmark on four computer vision tasks, i.e., image classification (ImageNet), semantic segmentation (CityScapes), 3D detection (KITTI), and video recognition (HMDB51). Totally 9 different settings are included, as shown in the data/*/trainval.pkl folders.

Note that each .pkl file contains more than 2500 architectures, and their corresponding evaluation results under multiple metrics. The original training logs and checkpoints (including model weights and optimizer data) will be uploaded to Google drive (more than 4T). We will share the download link once the upload is complete.

Quick start

First, train the predictor

python3 tools/train_predictor.py  # --cfg configs/seg.yaml

Then, edit architecture based on desired gradients

python3 tools/ncp.py  # --cfg configs/seg.yaml

Examples

  • An example in NAS-Bench-MR (Seg):
{'mIoU': 70.57,
 'mAcc': 80.07,
 'aAcc': 95.29,
 'input_channel': [16, 64],
 # [num_branches, [num_convs], [num_channels]]
 'network_setting': [[1, [3], [128]],
  [2, [3, 3], [32, 48]],
  [2, [3, 3], [32, 48]],
  [2, [3, 3], [32, 48]],
  [3, [2, 3, 2], [16, 32, 16]],
  [3, [2, 3, 2], [16, 32, 16]],
  [4, [2, 4, 1, 1], [96, 112, 48, 80]]],
 'last_channel': 112,
 # [num_branches, num_block1, num_convs1, num_channels1, ..., num_block4, num_convs4, num_channels4, last_channel]
 'embedding': [16, 64, 1, 3, 128, 3, 3, 3, 32, 48, 2, 2, 3, 2, 16, 32, 16, 1, 2, 4, 1, 1, 96, 112, 48, 80]
}
  • Load Datasets:
import pickle
exps = pickle.load(open('data/seg/trainval.pkl', 'rb'))
# Then process each item in exps
  • Load Model / Get Params and Flops (based on the thop library):
import torch
from thop import profile
from models.supernet import MultiResolutionNet

# Get model using input_channel & network_setting & last_channel
model = MultiResolutionNet(input_channel=[16, 64],
                           network_setting=[[1, [3], [128]],
                            [2, [3, 3], [32, 48]],
                            [2, [3, 3], [32, 48]],
                            [2, [3, 3], [32, 48]],
                            [3, [2, 3, 2], [16, 32, 16]],
                            [3, [2, 3, 2], [16, 32, 16]],
                            [4, [2, 4, 1, 1], [96, 112, 48, 80]]],
                          last_channel=112)

# Get Flops and Parameters
input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ))  

structure

Data Format

Each code in data/search_list.txt denotes an architecture. It can be load in our supernet as follows:

  • Code2Setting
params = '96_128-1_1_1_48-1_2_1_1_128_8-1_3_1_1_1_128_128_120-4_4_4_4_4_4_128_128_128_128-64'
embedding = [int(item) for item in params.replace('-', '_').split('_')]

embedding = [ 96, 128,   1,   1,  48,   1,   1,   1, 128,   8,   1,   1,
           1,   1, 128, 128, 120,   4,   4,   4,   4,   4, 128, 128,
         128, 128, 64]
input_channels = embedding[0:2]
block_1 = embedding[2:3] + [1] + embedding[3:5]
block_2 = embedding[5:6] + [2] + embedding[6:10]
block_3 = embedding[10:11] + [3] + embedding[11:17]
block_4 = embedding[17:18] + [4] + embedding[18:26]
last_channels = embedding[26:27]
network_setting = []
for item in [block_1, block_2, block_3, block_4]:
    for _ in range(item[0]):
        network_setting.append([item[1], item[2:-int(len(item) / 2 - 1)], item[-int(len(item) / 2 - 1):]])

# network_setting = [[1, [1], [48]], 
#  [2, [1, 1], [128, 8]],
#  [3, [1, 1, 1], [128, 128, 120]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]]]
# input_channels = [96, 128]
# last_channels = [64]
  • Setting2Code
input_channels = [str(item) for item in input_channels]
block_1 = [str(item) for item in block_1]
block_2 = [str(item) for item in block_2]
block_3 = [str(item) for item in block_3]
block_4 = [str(item) for item in block_4]
last_channels = [str(item) for item in last_channels]

params = [input_channels, block_1, block_2, block_3, block_4, last_channels]
params = ['_'.join(item) for item in params]
params = '-'.join(params)
# params
# 96_128-1_1_1_48-1_2_1_1_128_8-1_3_1_1_1_128_128_120-4_4_4_4_4_4_128_128_128_128-64'

License

For academic use, this project is licensed under the 2-clause BSD License. For commercial use, please contact the author.

Owner
Mingyu Ding
Mingyu Ding
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
a minimal terminal with python πŸ˜ŽπŸ˜‰

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022