Automatic deep learning for image classification.

Related tags

Deep LearningAutoDL
Overview

AutoDL

AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image.

AutoGluon

Documents for AutoDL Benchmark

This tutorial demonstrates how to use AutoDL with your own custom datasets. As an example, we use a dataset from Kaggle to show the required steps to format image data properly for AutoDL.

Step 1: Organizing the dataset into proper directories

After completing this step, you will have the following directory structure on your machine:

   Your_Dataset/
    ├──train/
        ├── class1/
        ├── class2/
        ├── class3/
        ├── ...
    ├──test/
        ├── class1/
        ├── class2/
        ├── class3/
        ├── ...

Here Your_Dataset is a folder containing the raw images categorized into classes. For example, subfolder class1 contains all images that belong to the first class, class2 contains all images belonging to the second class, etc.

We generally recommend at least 100 training images per class for reasonable classification performance, but this might depend on the type of images in your specific use-case.

Under each class, the following image formats are supported when training your model:

- JPG
- JPEG
- PNG

In the same dataset, all the images should be in the same format. Note that in image classification, we do not require that all images have the same resolution.

You will need to organize your dataset into the above directory structure before using AutoDL.

For kaggle datasets

Sometimes dataset needs additional data preprocessing by Script data_processing.

  data
    ├──XXXX/images_all
    ├         ├── img1.jpg
    ├         ├── img2.jpg
    ├──XXXX/test
    ├         ├── ...

python data_processing.py --dataset <aerial\dog\> --data-dir data

Finally, we have the desired directory structure under ./data/XXXX/train/, which in this case looks as follows:

  data
    ├──XXXX/train
    ├         ├── classA
    ├         ├── classb
    ├         ├── ...
    ├──XXXX/test
    ├         ├── ...
    ├
    ├
    ├──ZZZZ/train
    ├         ├── classA
    ├         ├── classb
    ├         ├── ...
    ├──ZZZZ/test
              ├── ...

For Paperwithcode datasets

TODO

python data_processing.py --dataset <aerial\dog\> --data-dir data

Step 2: Split the original dataset into train_data and test_data

Sometimes dataset needs additional data_split by Script data_split.

dataset__name
    ├──train
        ├──split/train
        ├         ├── classA
        ├         ├── classb
        ├         ├── ...
        ├──split/test
        ├         ├── classA
        ├         ├── classb
        ├         ├── ...
    ├──test
        ├── img1.jpg
        ├── img2.jpg
        ├── ...
python data_split.py --data-dir /data/AutoML_compete/Store-type-recognition/

Step 3: Use AutoDL fit to generate a classification model

Now that we have a Dataset object, we can use AutoGluon's default configuration to obtain an image classification model using the fit function.

Run benchmark.py script with different dataset:

AutoGluon Benchmark

python benchmark.py \
    --data_path /media/robin/DATA/datatsets/image_data/dog-breed-identification \
    --output_path /home/robin/jianzh/automl/autodl/benchmark \
    --dataset dog-breed-identification \
    --train_framework autogluon

AutoKeras Benchmark

python benchmark.py \
    --data_path /media/robin/DATA/datatsets/image_data/hymenoptera/images/train \
    --dataset hymenoptera \
    --output_path /home/robin/jianzh/automl/autodl/benchmark \
    --train_framework autokeras

Step 4: fit to generate a classification model

Bag of tricks are used on image classification dataset.

Customize parameter configuration according your data as follow:

lr_config = ag.space.Dict(
            lr_mode='cosine',
            lr_decay=0.1,
            lr_decay_period=0,
            lr_decay_epoch='40,80',
            warmup_lr=0.0,
            warmup_epochs=5)

tricks = ag.space.Dict(
            last_gamma=True,
            use_pretrained=True,
            use_se=False,
            mixup=False,
            mixup_alpha=0.2,
            mixup_off_epoch=0,
            label_smoothing=True,
            no_wd=True,
            teacher_name=None,
            temperature=20.0,
            hard_weight=0.5,
            batch_norm=False,
            use_gn=False)
Owner
wenqi
Learning is all you need!
wenqi
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022