Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Overview

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding

PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) paper.

Method Description

Distilled Sentence Embedding (DSE) distills knowledge from a finetuned state-of-the-art transformer model (BERT) to create high quality sentence embeddings. For a complete description, as well as implementation details and hyperparameters, please refer to the paper.

Usage

Follow the instructions below in order to run the training procedure of the Distilled Sentence Embedding (DSE) method. The python scripts below can be run with the -h parameter to get more information.

1. Install Requirements

Tested with Python 3.6+.

pip install -r requirements.txt

2. Download GLUE Datasets

Run the download_glue_data.py script to download the GLUE datasets.

python download_glue_data.py

3. Finetune BERT on a Specific Task

Finetune a standard BERT model on a specific task (e.g., MRPC, MNLI, etc.). Below is an example for the MRPC dataset.

python finetune_bert.py \
--bert_model bert-large-uncased-whole-word-masking \
--task_name mrpc \
--do_train \
--do_eval \
--do_lower_case \
--data_dir glue_data/MRPC \
--max_seq_length 128 \
--train_batch_size 32 \
--gradient_accumulation_steps 2 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir outputs/large_uncased_finetuned_mrpc \
--overwrite_output_dir \
--no_parallel

Note: For our code to work with the AllNLI dataset (a combination of the MNLI and SNLI datasets), you simply need to create a folder where the downloaded GLUE datasets are and copy the MNLI and SNLI datasets into it.

4. Create Logits for Distillation from the Finetuned BERT

Execute the following command to create the logits which will be used for the distillation training objective. Note that the bert_checkpoint_dir parameter has to match the output_dir from the previous command.

python run_distillation_logits_creator.py \
--task_name mrpc \
--data_dir glue_data/MRPC \
--do_lower_case \
--train_features_path glue_data/MRPC/train_bert-large-uncased-whole-word-masking_128_mrpc \
--bert_checkpoint_dir outputs/large_uncased_finetuned_mrpc

5. Train the DSE Model using the Finetuned BERT Logits

Train the DSE model using the extracted logits. Notice that the distillation_logits_path parameter needs to be changed according to the task.

python dse_train_runner.py \
--task_name mrpc \
--data_dir glue_data/MRPC \
--distillation_logits_path outputs/logits/large_uncased_finetuned_mrpc_logits.pt \
--do_lower_case \
--file_log \
--epochs 8 \
--store_checkpoints \
--fc_dims 512 1

Important Notes:

  • To store checkpoints for the model make sure that the --store_checkpoints flag is passed as shown above.
  • The fc_dims parameter accepts a list of space separated integers, and is the dimensions of the fully connected classifier that is put on top of the extracted features from the Siamese DSE model. The output dimension (in this case 1) needs to be changed according to the wanted output dimensionality. For example, for the MNLI dataset the fc_dims parameter should be 512 3 since it is a 3 class classification task.

6. Loading the Trained DSE Model

During training, checkpoints of the Trainer object which contains the model will be saved. You can load these checkpoints and extract the model state dictionary from them. Then you can load the state into a created DSESiameseClassifier model. The load_dse_checkpoint_example.py script contains an example of how to do that.

To load the model trained with the example commands above you can use:

python load_dse_checkpoint_example.py \
--task_name mrpc \
--trainer_checkpoint <path_to_saved_checkpoint> \
--do_lower_case \
--fc_dims 512 1

Acknowledgments

Citation

If you find this code useful, please cite the following paper:

@inproceedings{barkan2020scalable,
  title={Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding},
  author={Barkan, Oren and Razin, Noam and Malkiel, Itzik and Katz, Ori and Caciularu, Avi and Koenigstein, Noam},
  booktitle={AAAI Conference on Artificial Intelligence (AAAI)},
  year={2020}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022