CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

Related tags

Deep LearningCHERRY
Overview

CHERRY CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link prediction decoder.

Overview

There are two kind of tasks that CHERRY can work:

  1. Host prediction for virus
  2. Identifying viruses that infect pathogenic bacteria

Users can choose one of the task when running CHERRY. If you have any trouble installing or using CHERRY, please let us know by opening an issue on GitHub or emailing us ([email protected]).

Required Dependencies

  • Python 3.x
  • Numpy
  • Pytorch>1.8.0
  • Networkx
  • Pandas
  • Diamond
  • BLAST
  • MCL
  • Prodigal

All these packages can be installed using Anaconda.

If you want to use the gpu to accelerate the program:

  • cuda
  • Pytorch-gpu

An easiler way to install

We recommend you to install all the package with Anaconda

After cloning this respository, you can use anaconda to install the CHERRY.yaml. This will install all packages you need with gpu mode (make sure you have installed cuda on your system to use the gpu version. Othervise, it will run with cpu version). The command is: conda env create -f CHERRY.yaml

  • For cpu version pytorch: conda install pytorch torchvision torchaudio cpuonly -c pytorch
  • For gpu version pytorch: Search pytorch to find the correct cuda version according to your computer Note: we suggest you to install all the package using conda (both miniconda and anaconda are ok). We supply a

Prepare the database

Due to the limited size of the GitHub, we zip the database. Before using CHEERY, you need to unpack them using the following commands.

cd CHEERY/dataset
bzip2 -d protein.fasta.bz2
bzip2 -d nucl.fasta.bz2
cd ../prokaryote
gunzip *
cd ..

Usage

1 Predicting host for viruses

If you want to predict hosts for viruses, the input should be a fasta file containing the virual sequences. We support an example file named "test_contigs.fa" in the Github folder. Then, the only command that you need to run is

python run_Speed_up.py [--contigs INPUT_FA] [--len MINIMUM_LEN] [--model MODEL] [--topk TOPK_PRED]

Options

  --contigs INPUT_FA
                        input fasta file
  --len MINIMUM_LEN
                        predict only for sequence >= len bp (default 8000)
  --model MODEL (pretrain or retrain)
                        predicting host with pretrained parameters or retrained paramters (default pretrain)
  --topk TOPK_PRED
                        The host prediction with topk score (default 1)

Example

Prediction on species level with pretrained paramters:

python run_Speed_up.py --contigs test_contigs.fa --len 8000 --model pretrain --topk 3

Note: Commonly, you do not need to retrain the model, especially when you do not have gpu unit.

OUTPUT

The format of the output file is a csv file ("final_prediction.csv") which contain the prediction of each virus. Column contig_name is the accession from the input.

Since the topk method is given, we cannot give the how taxaonmic tree for each prediction. However, we will supply a script for you to convert the prediction into a complte taxonmoy tree. Use the following command to generate taxonomy tree:

python run_Taxonomy_tree.py [--k TOPK_PRED]

Because there are k prediction in the "final_prediction.csv" file, you need to specify the k to generate the tree. The output of program is 'Top_k_prediction_taxonomy.csv'.

2 Predicting virus infecting prokaryote

If you want to predict hosts for viruses, you need to supply two kinds of inputs:

  1. Place your prokaryotic genomes in new_prokaryote/ folder.
  2. A fasta file containing the virus squences. Then, the program will output which virus in your fasta file will infect the prkaryotes in the new_prokaryote/ folder.

The command is simlar to the previous one but two more paramter is need:

python run_Speed_up.py [--mode MODE] [--t THRESHOLD]

Example

python run_Speed_up.py --contigs test_contigs.fa --mode prokaryote --t 0.98

Options

  --mode MODE (prokaryote or virus)
                        Switch mode for predicting virus or predicting host
  --t THRESHOLD
                        The confident threshold for predicting virus, the higier the threshold the higher the precision. (default 0.98)

OUTPUT

The format of the output file is a csv file which contain the prediction of each virus. Column prokaryote is the accession of your given prokaryotic genomes. Column virus is the list of viruses that might infect these genomes.

Extension of the parokaryotic genomes database

Due to the limitation of storage on GitHub, we only provided the parokaryote with known interactions (Date up to 2020) in prokaryote folder. If you want to predict interactions with more species, please place your parokaryotic genomes into prokaryote/ folder and add an entry of taxonomy information into dataset/prokaryote.csv. We also recommand you only add the prokaryotes of interest to save the computation resourse and time. This is because all the genomes in prokaryote folder will be used to generate the multimodal graph, which is a O(n^2) algorithm.

Example

If you have a metagenomic data and you know that only E. coli, Butyrivibrio fibrisolvens, and Faecalibacterium prausnitzii exist in the metagenomic data. Then you can placed the genomes of these three species into the prokaryote/ and add the entry in dataset/prokaryote.csv. An example of the entry is look like:

GCF_000007445,Bacteria,Proteobacteria,Gammaproteobacteria,Enterobacterales,Enterobacteriaceae,Escherichia,Escherichia coli

The corresponding header of the entry is: Accession,Superkingdom,Phylum,Class,Order,Family,Genus,Species. If you do not know the whole taxonomy tree, you can directly use a specific name for all columns. Because CHERRY is a link prediction tool, it will directly use the given name for prediction.

Noted: Since our program will use the accession for searching and constructing the knowledge graph, the name of the fasta file of your genomes should be the same as the given accession. For example, if your accession is GCF_000007445, your file name should be GCF_000007445.fa. Otherwise, the program cannot find the entry.

Extension of the virus-prokaryote interactions database

If you know more virus-prokaryote interactions than our pre-trained model (given in Interactiondata), you can add them to train a custom model. Several steps you need to do to train your model:

  1. Add your viral genomes into the nucl.fasta file and run the python refresh.py to generate new protein.fasta and database_gene_to_genome.csv files. They will replace the old one in the dataset/ folder automatically.
  2. Add the entrys of host taxonomy information into dataset/virus.csv. The corresponding header of the entry is: Accession (of the virus), Superkingdom, Phylum, Class, Order, Family, Genus, Species. The required field is Species. You can left it blank if you do not know other fields. Also, the accession of the virus shall be the same as your fasta entry.
  3. Place your prokaryotic genomes into the the prokaryote/ folder and add an entry in dataset/prokaryote.csv. The guideline is the same as the previous section.
  4. Use retrain as the parameter for --mode option to run the program.

References

The paper is submitted to the Briefings in Bioinformatics.

The arXiv version can be found via: CHERRY: a Computational metHod for accuratE pRediction of virus-pRokarYotic interactions using a graph encoder-decoder model

Contact

If you have any questions, please email us: [email protected]

Notes

  1. if the program output an error (which is caused by your machine): Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library. You can type in the command export MKL_SERVICE_FORCE_INTEL=1 before runing run_Speed_up.py
Owner
Kenneth Shang
Kenneth Shang
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022