Some methods for comparing network representations in deep learning and neuroscience.

Related tags

Deep Learningnetrep
Overview

Generalized Shape Metrics on Neural Representations

Generalized Shape Metrics on Neural Representations

In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations across networks is a topic of substantial interest.

This code package computes metrics — notions of distance that satisfy the triangle inequality — between neural representations. If we record the activity of K networks, we can compute all pairwise distances and collect them into a K × K distance matrix. The triangle inequality ensures that all of these distance relationships are, in some sense, self-consistent. This self-consistency enables us to apply off-the-shelf algorithms for clustering and dimensionality reduction, which are available through many open-source packages such as scikit-learn.

We published a conference paper (Neurips '21) describing these ideas.

@inproceedings{neural_shape_metrics,
  author = {Alex H. Williams and Erin Kunz and Simon Kornblith and Scott W. Linderman},
  title = {Generalized Shape Metrics on Neural Representations},
  year = {2021},
  booktitle = {Advances in Neural Information Processing Systems},
  volume = {34},
  url = {https://arxiv.org/abs/2110.14739}
}

We also presented an early version of this work at Cosyne (see 7 minute summary on youtube) in early 2021.

Note: This research code remains a work-in-progress to some extent. It could use more documentation and examples. Please use at your own risk and reach out to us ([email protected]) if you have questions.

A short and preliminary guide

To install, set up standard python libraries (https://ipython.org/install.html) and then install via pip:

git clone https://github.com/ahwillia/netrep
cd netrep/
pip install -e .

Since the code is preliminary, you will be able to use git pull to get updates as we release them.

Computing the distance between two networks

The metrics implemented in this library are extensions of Procrustes distance. Some useful background can be found in Dryden & Mardia's textbook on Statistical Shape Analysis. A forthcoming preprint will describe the various metrics in more detail. For now, please see the short video description above and reach out to us if you have more questions.

The code uses an API similar to scikit-learn, so we recommend familiarizing yourself with that package.

We start by defining a metric object. The simplest metric to use is LinearMetric, which has a hyperparameter alpha which regularizes the alignment operation:

from netrep.metrics import LinearMetric

# Rotationally invariant metric (fully regularized).
proc_metric = LinearMetric(alpha=1.0, center_columns=True)

# Linearly invariant metric (no regularization).
cca_metric = LinearMetric(alpha=0.0, center_columns=True)

Valid values for the regularization term are 0 <= alpha <= 1. When alpha == 0, the resulting metric is similar to CCA and allows for an invertible linear transformation to align the activations. When alpha == 1, the model is fully regularized and only allows for rotational alignments.

We reccomend starting with the fully regularized model where alpha == 1.

Next, we define the data, which are stored in matrices X and Y that hold paired activations from two networks. Each row of X and Y contains a matched sample of neural activations. For example, we might record the activity of 500 neurons in visual cortex in response to 1000 images (or, analogously, feed 1000 images into a deep network and store the activations of 500 hidden units). We would collect the neural responses into a 1000 x 500 matrix X. We'd then repeat the experiment in a second animal and store the responses in a second matrix Y.

By default if the number of neurons in X and Y do not match, we zero-pad the dataset with fewer neurons to match the size of the larger dataset. This can be justified on the basis that zero-padding does not distort the geometry of the dataset, it simply embeds it into a higher dimension so that the two may be compared. Alternatively, one could preprocess the data by using PCA (for example) to project the data into a common, lower-dimensional space. The default zero-padding behavior can be deactivated as follows:

LinearMetric(alpha=1.0, zero_pad=True)  # default behavior

LinearMetric(alpha=1.0, zero_pad=False)  # throws an error if number of columns in X and Y don't match

Now we are ready to fit alignment transformations (which account for the neurons being mismatched across networks). Then, we evaluate the distance in the aligned space. These are respectively done by calling fit(...) and score(...) functions on the metric instance.

# Given
# -----
# X : ndarray, (num_samples x num_neurons), activations from first network.
#
# Y : ndarray, (num_samples x num_neurons), activations from second network.
#
# metric : an instance of LinearMetric(...)

# Fit alignment transformations.
metric.fit(X, Y)

# Evaluate distance between X and Y, using alignments fit above.
dist = metric.score(X, Y)

Since the model is fit and evaluated by separate function calls, it is very easy to cross-validate the estimated distances:

# Given
# -----
# X_train : ndarray, (num_train_samples x num_neurons), training data from first network.
#
# Y_train : ndarray, (num_train_samples x num_neurons), training data from second network.
#
# X_test : ndarray, (num_test_samples x num_neurons), test data from first network.
#
# Y_test : ndarray, (num_test_samples x num_neurons), test data from second network.
#
# metric : an instance of LinearMetric(...)

# Fit alignment transformations to the training set.
metric.fit(X_train, Y_train)

# Evaluate distance on the test set.
dist = metric.score(X_test, Y_test)

In fact, we can use scikit-learn's built-in cross-validation tools, since LinearMetric extends the sklearn.base.BaseEstimator class. So, if you'd like to do 10-fold cross-validation, for example:

from sklearn.model_selection import cross_validate
results = cross_validate(metric, X, Y, return_train_score=True, cv=10)
results["train_score"]  # holds 10 distance estimates between X and Y, using training data.
results["test_score"]   # holds 10 distance estimates between X and Y, using heldout data.

We can also call transform(...) function to align the activations

# Fit alignment transformations.
metric.fit(X, Y)

# Apply alignment transformations.
X_aligned, Y_aligned = metric.transform(X, Y)

# Now, e.g., you could use PCA to visualize the data in the aligned space...

Computing distances between many networks

Things start to get really interesting when we start to consider larger cohorts containing more than just two networks. The netrep.multiset file contains some useful methods. Let Xs = [X1, X2, X3, ..., Xk] be a list of num_samples x num_neurons matrices similar to those described above. We can do the following:

1) Computing all pairwise distances. The following returns a symmetric k x k matrix of distances.

metric = LinearMetric(alpha=1.0)
dist_matrix = pairwise_distances(metric, Xs, verbose=False)

By setting verbose=True, we print out a progress bar which might be useful for very large datasets.

We can also split data into training sets and test sets.

# Split data into training and testing sets
splitdata = [np.array_split(X, 2) for X in Xs]
traindata = [X_train for (X_train, X_test) in splitdata]
testdata = [X_test for (X_train, X_test) in splitdata]

# Compute all pairwise train and test distances.
train_dists, test_dists = pairwise_distances(metric, traindata, testdata=testdata)

2) Using the pairwise distance matrix. Many of the methods in sklearn.cluster and sklearn.manifold will work and operate directly on these distance matrices.

For example, to perform clustering over the cohort of networks, we could do:

# Given
# -----
# dist_matrix : (num_networks x num_networks) symmetric distance matrix, computed as described above.

# DBSCAN clustering
from sklearn.cluster import DBSCAN
cluster_ids = DBSCAN(metric="precomputed").fit_transform(dist_matrix)

# Agglomerative clustering
from sklearn.cluster import AgglomerativeClustering
cluster_ids = AgglomerativeClustering(n_clusters=5, affinity="precomputed").fit_transform(dist_matrix)

# OPTICS
from sklearn.cluster import OPTICS
cluster_ids = OPTICS(metric="precomputed").fit_transform(dist_matrix)

# Scipy hierarchical clustering
from scipy.cluster import hierarchy
from scipy.spatial.distance import squareform
hierarchy.ward(squareform(dist_matrix)) # return linkage

We can also visualize the set of networks in 2D space by using manifold learning methods:

# Given
# -----
# dist_matrix : (num_networks x num_networks) symmetric distance matrix, computed as described above.

# Multi-dimensional scaling
from sklearn.manifold import MDS
lowd_embedding = MDS(dissimilarity="precomputed").fit_transform(dist_matrix)

# t-distributed Stochastic Neighbor Embedding
from sklearn.manifold import TSNE
lowd_embedding = TSNE(dissimilarity="precomputed").fit_transform(dist_matrix)

# Isomap
from sklearn.manifold import Isomap
lowd_embedding = Isomap(dissimilarity="precomputed").fit_transform(dist_matrix)

# etc., etc.

3) K-means clustering and averaging across networks

We can average across networks using the metric spaces defined above. Specifically, we can compute a Fréchet/Karcher mean in the metric space. See also the section on "Generalized Procrustes Analysis" in Gower & Dijksterhuis (2004).

from netrep.multiset import procrustes_average
Xbar = procrustes_average(Xs, max_iter=100, tol=1e-4)

Further, we can extend the well-known k-means clustering algorithm to the metric space defined by Procrustes distance.

from netrep.multiset import procrustes_kmeans

# Fit 3 clusters
n_clusters = 3
centroids, labels, cent_dists = procrustes_kmeans(Xs, n_clusters)

An incomplete list of related work

Dabagia, Max, Konrad P. Kording, and Eva L. Dyer (forthcoming). "Comparing high-dimensional neural recordings by aligning their low-dimensional latent representations.” Nature Biomedical Engineering

Degenhart, A. D., Bishop, W. E., Oby, E. R., Tyler-Kabara, E. C., Chase, S. M., Batista, A. P., & Byron, M. Y. (2020). Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity. Nature biomedical engineering, 4(7), 672-685.

Gower, J. C., & Dijksterhuis, G. B. (2004). Procrustes problems (Vol. 30). Oxford University Press.

Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., & Miller, L. E. (2020). Long-term stability of cortical population dynamics underlying consistent behavior. Nature neuroscience, 23(2), 260-270.

Haxby, J. V., Guntupalli, J. S., Nastase, S. A., & Feilong, M. (2020). Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies. Elife, 9, e56601.

Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. (2019, May). Similarity of neural network representations revisited. In International Conference on Machine Learning (pp. 3519-3529). PMLR.

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2, 4.

Maheswaranathan, N., Williams, A. H., Golub, M. D., Ganguli, S., & Sussillo, D. (2019). Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems, 2019, 15629.

Raghu, M., Gilmer, J., Yosinski, J., & Sohl-Dickstein, J. (2017). Svcca: Singular vector canonical correlation analysis for deep learning dynamics and interpretability. arXiv preprint arXiv:1706.05806.

Owner
Alex Williams
Alex Williams
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023