[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

Overview

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

Getting Started

Our codes are implemented and tested with python 3.6 and pytorch 1.5.

Install Pytorch following the official guide on Pytorch website.

And install the requirements using virtualenv or conda:

pip install -r requirements.txt

Data Preparation

Refer to data.md for instructions.

Training

Stage 1 training

Generally, you can use the distributed launch script of pytorch to start training.

For example, for a training on 2 nodes, 4 gpus each (2x4=8 gpus total): On node 0, run:

python -u -m torch.distributed.launch \
    --nnodes=2 \
    --node_rank=0 \
    --nproc_per_node=4 \
    --master_port=<MASTER_PORT> \
    --master_addr=<MASTER_NODE_ID> \
    --use_env \
    train.py --cfg configs/config_stage1.yaml

On node 1, run:

python -u -m torch.distributed.launch \
    --nnodes=2 \
    --node_rank=1 \
    --nproc_per_node=4 \
    --master_port=<MASTER_PORT> \
    --master_addr=<MASTER_NODE_ID> \
    --use_env \
    train.py --cfg configs/config_stage1.yaml

Otherwise, if you are using task scheduling system such as Slurm to submit your training tasks, you can refer to this script to start your training:

# training on 2 nodes, 4 gpus each (2x4=8 gpus total)
sh scripts/run.sh 2 4 configs/config_stage1.yaml

The checkpoint of training will be saved in [results/] by default. You are free to modify it in the config file.

Stage 2 training

Use the last checkpoint of stage 1 to initialize the model and starts training stage 2.

# On Node 0.
python -u -m torch.distributed.launch \
    --nnodes=2 \
    --node_rank=0 \
    --nproc_per_node=4 \
    --master_port=<MASTER_PORT> \
    --master_addr=<MASTER_NODE_ID> \
    --use_env \
    train.py --cfg configs/config_stage2.yaml --pretrained <PATH_TO_CHECKPOINT_FILE>

Similar on node 1.

Evaluation

To evaluate model on 3dpw test set:

python eval.py --cfg <PATH_TO_EXPERIMENT>/config.yaml --checkpoint <PATH_TO_EXPERIMENT>/model_best.pth.tar --eval_set 3dpw

Evaluation metric is Procrustes Aligned Mean Per Joint Position Error (PA-MPJPE) in mm.

Models PA-MPJPE ↓ MPJPE ↓ PVE ↓ ACCEL ↓
HMR (w/o 3DPW) 81.3 130.0 - 37.4
SPIN (w/o 3DPW) 59.2 96.9 116.4 29.8
MEVA (w/ 3DPW) 54.7 86.9 - 11.6
VIBE (w/o 3DPW) 56.5 93.5 113.4 27.1
VIBE (w/ 3DPW) 51.9 82.9 99.1 23.4
ours (w/o 3DPW) 50.7 88.8 104.5 18.0
ours (w/ 3DPW) 45.7 79.1 92.6 17.6

Citation

@inproceedings{wan2021,
  title={Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation},
  author={Ziniu Wan, Zhengjia Li, Maoqing Tian, Jianbo Liu, Shuai Yi, Hongsheng Li},
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year = {2021}
}
Owner
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023