PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Overview

Unbiased Teacher for Semi-Supervised Object Detection

License: MIT

This is the PyTorch implementation of our paper:
Unbiased Teacher for Semi-Supervised Object Detection
Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen Wu, Zsolt Kira, Peter Vajda
International Conference on Learning Representations (ICLR), 2021

[arXiv] [OpenReview] [Project]

Installation

Prerequisites

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation.

Install PyTorch in Conda env

# create conda env
conda create -n detectron2 python=3.6
# activate the enviorment
conda activate detectron2
# install PyTorch >=1.5 with GPU
conda install pytorch torchvision -c pytorch

Build Detectron2 from Source

Follow the INSTALL.md to install Detectron2.

Dataset download

  1. Download COCO dataset
# download images
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip

# download annotations
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
  1. Organize the dataset as following:
unbiased_teacher/
└── datasets/
    └── coco/
        ├── train2017/
        ├── val2017/
        └── annotations/
        	├── instances_train2017.json
        	└── instances_val2017.json

Training

  • Train the Unbiased Teacher under 1% COCO-supervision
python train_net.py \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup1_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16
  • Train the Unbiased Teacher under 2% COCO-supervision
python train_net.py \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup2_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16
  • Train the Unbiased Teacher under 5% COCO-supervision
python train_net.py \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup5_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16
  • Train the Unbiased Teacher under 10% COCO-supervision
python train_net.py \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup10_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16

Resume the training

python train_net.py \
      --resume \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup10_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16 MODEL.WEIGHTS <your weight>.pth

Evaluation

python train_net.py \
      --eval-only \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup10_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16 MODEL.WEIGHTS <your weight>.pth

Model Zoo

Coming soon

FAQ

  1. Q: Using the lower batch size and fewer GPUs cannot achieve the results presented in the paper?
  • A: We train the model with 32 labeled images + 32 unlabeled images per batch for the results presented in the paper, and using the lower batch size leads to lower accuracy. For example, in the 1% COCO-supervision setting, the model trained with 16 labeled images + 16 unlabeled images achieves 19.9 AP as shown in the following table.
Experiment GPUs Batch size per node Batch size AP
8 GPUs/node; 4 nodes 8 labeled imgs + 8 unlabeled imgs 32 labeled img + 32 unlabeled imgs 20.75
8 GPUs/node; 1 node 16 labeled imgs + 16 unlabeled imgs 16 labeled imgs + 16 unlabeled imgs 19.9

Citing Unbiased Teacher

If you use Unbiased Teacher in your research or wish to refer to the results published in the paper, please use the following BibTeX entry.

@inproceedings{liu2021unbiased,
    title={Unbiased Teacher for Semi-Supervised Object Detection},
    author={Liu, Yen-Cheng and Ma, Chih-Yao and He, Zijian and Kuo, Chia-Wen and Chen, Kan and Zhang, Peizhao and Wu, Bichen and Kira, Zsolt and Vajda, Peter},
    booktitle={Proceedings of the International Conference on Learning Representations (ICLR)},
    year={2021},
}

Also, if you use Detectron2 in your research, please use the following BibTeX entry.

@misc{wu2019detectron2,
  author =       {Yuxin Wu and Alexander Kirillov and Francisco Massa and
                  Wan-Yen Lo and Ross Girshick},
  title =        {Detectron2},
  howpublished = {\url{https://github.com/facebookresearch/detectron2}},
  year =         {2019}
}

License

This project is licensed under MIT License, as found in the LICENSE file.

PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023