Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Related tags

Deep Learninglsr
Overview

LSR: Learned Spatial Representations for Few-shot Talking-Head Synthesis

Official code release for LSR. For technical details, please refer to:

Learned Spatial Representations for Few-shot Talking Head Synthesis.
Moustafa Meshry, Saksham Suri, Larry S. Davis, Abhinav Shrivastava
In International Conference on Computer Vision (ICCV), 2021.

Paper | Project page | Video

If you find this code useful, please consider citing:

@inproceedings{meshry2021step,
  title = {Learned Spatial Representations for Few-shot Talking-Head Synthesis},
  author = {Meshry, Moustafa and
          Suri, Saksham and
          Davis, Larry S. and
          Shrivastava, Abhinav},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
  year = {2021}
}

Environment setup

The code was built using tensorflow 2.2.0, cuda 10.1.243, and cudnn v7.6.5, but should be compatible with more recent tensorflow releases and cuda versions. To set up a virtual environement for the code, follow the following instructions.

  • Create a new conda environment
conda create -n lsr python=3.6
  • Activate the lsr environment
conda activate lsr
  • Set up the prerequisites
pip install -r requirements.txt

Run a pre-trained model

  • Download our pretrained model and extract to ./_trained_models/meta_learning
  • To run the inference for a test identity, execute the following command:
python main.py \
    --train_dir=_trained_models/meta_learning \
    --run_mode=infer \
    --K=1 \
    --source_subject_dir=_datasets/sample_fsth_eval_subset_processed/train/id00017/OLguY5ofUrY/combined \
    --driver_subject_dir=_datasets/sample_fsth_eval_subset_processed/test/id00017/OLguY5ofUrY/combined \
    --few_shot_finetuning=false 

where --K specifies the number of few-shot inputs, --few_shot_finetuning specifies whether or not to fine-tune the meta-learned model using the the K-shot inputs, and --source_subject_dir and --driver_subject_dir specify the source identity and driver sequence data respectively. Each output image contains a tuple of 5 images represeting the following (concatenated along the width):

  • The input facial landmarks for the target view.
  • The output discrete layout of our model, visualized in RGB.
  • The oracle segmentation map using an off-the-shelf segmentation model (i.e. the pesuedo ground truth), visualized in RGB.
  • The final output of our model.
  • The ground truth image of the driver subject.

A sample tuple is shown below.

        Input landmarks             Output spatial map           Oracle segmentation                     Output                           Ground truth


Test data and pre-computed outupts

Our model is trained on the train split of the VoxCeleb2 dataset. The data used for evaluation is adopted from the "Few-Shot Adversarial Learning of Realistic Neural Talking Head Models" paper (Zakharov et. al, 2019), and can be downloaded from the link provided by the authors of the aforementioned paper.

The test data contains 1600 images of 50 test identities (not seen by the model during training). Each identity has 32 input frames + 32 hold-out frames. The K-shot inputs to the model are uniformly sampled from the 32 input set. If the subject finetuning is turned on, then the model is finetuned on the K-shot inputs. The 32 hold-out frames are never shown to the finetuned model. For more details about the test data, refer to the aforementioned paper (and our paper). To facilitate comparison to our method, we provide a link with our pre-computed outputs of the test subset for K={1, 4, 8, 32} and for both the subject-agnostic (meta-learned) and subject-finetuned models. For more details, please refer to the README file associated with the released outputs. Alternatively, you can run our pre-trained model on your own data or re-train our model by following the instructions for training, inference and dataset preparation.

Dataset pre-processing

The dataset preprocessing has the following steps:

  1. Facial landmark generation
  2. Face parsing
  3. Converting the VoxCeleb2 dataset to tfrecords (for training).

We provide details for each of these steps.

Facial Landmark Generation

  1. data_dir: Path to a directory containing data to be processed.
  2. output_dir: Path to the output directory where the processed data should be saved.
  3. k: Sampling rate for frames from video (Default is set to 10)
  4. mode: The mode can be set to images or videos depending on whether the input data is video files or already extracted frames.

Here are example commands that process the sample data provided with this repository:

Note: Make sure the folders only contain the videos or images that are to be processed.

  • Generate facial landmarks for sample VoxCeleb2 test videos.
python preprocessing/landmarks/release_landmark.py \
    --data_dir=_datasets/sample_test_videos \
    --output_dir=_datasets/sample_test_videos_processed \
    --mode=videos

To process the full dev and test subsets of the VoxCeleb2 dataset, run the above command twice while setting the --data_dir to point to the downloaded dev and test splits respectively.

  • Generate facial landmarks for the train portion of the sample evaluation subset.
python preprocessing/landmarks/release_landmark.py \
    --data_dir=_datasets/sample_fsth_eval_subset/train \
    --output_dir=_datasets/sample_fsth_eval_subset_processed/train \
    --mode=images
  • Generate facial landmarks for the test portion of the sample evaluation subset.
python preprocessing/landmarks/release_landmark.py \
    --data_dir=_datasets/sample_fsth_eval_subset/test \
    --output_dir=_datasets/sample_fsth_eval_subset_processed/test \
    --mode images

To process the full evaluation subset, download the evaluation subset, and run the above commands on the train and test portions of it.

Facial Parsing

The facial parsing step generates the oracle segmentation maps. It uses face parser of the CelebAMask-HQ github repository

To set it up follow the instructions below, and refer to instructions in the CelebAMask-HQ github repository for guidance.

mkdir third_party
git clone https://github.com/switchablenorms/CelebAMask-HQ.git third_party
cp preprocessing/segmentation/* third_party/face_parsing/.

To process the sample data provided with this repository, run the following commands.

  • Generate oracle segmentations for sample VoxCeleb2 videos.
python -u third_party/face_parsing/generate_oracle_segmentations.py \
    --batch_size=1 \
    --test_image_path=_datasets/sample_test_videos_processed
  • Generate oracle segmentations for the train portion of the sample evaluation subset.
python -u third_party/face_parsing/generate_oracle_segmentations.py \
    --batch_size=1 \
    --test_image_path=_datasets/sample_fsth_eval_subset_processed/train
  • Generate oracle segmentations for the test portion of the sample evaluation subset.
python -u third_party/face_parsing/generate_oracle_segmentations.py \
    --batch_size=1 \
    --test_image_path=_datasets/sample_fsth_eval_subset_processed/test

Converting VoxCeleb2 to tfrecords.

To re-train our model, you'll need to export the VoxCeleb2 dataset to a TF-record format. After downloading the VoxCeleb2 dataset and generating the facial landmarks and segmentations for it, run the following commands to export them to tfrecods.

python data/export_voxceleb_to_tfrecords.py \
  --dataset_parent_dir=
   
     \
  --output_parent_dir=
    
      \
  --subset=dev \
  --num_shards=1000

    
   

For example, the command to convert the sample data provided with this repository is

python data/export_voxceleb_to_tfrecords.py \
  --dataset_parent_dir=_datasets/sample_fsth_eval_subset_processed \
  --output_parent_dir=_datasets/sample_fsth_eval_subset_processed/tfrecords \
  --subset=test \
  --num_shards=1

Training

Training consists of two stages: first, we bootstrap the training of the layout generator by training it to predict a segmentation map for the target view. Second, we turn off the semantic segmentation loss and train our full pipeline. Our code assumes the training data in a tfrecord format (see previous instructions for dataset preparation).

After you have generated the dev and test tfrecords of the VoxCeleb2 dataset, you can run the training as follows:

  • run the layout pre-training step: execute the following command
sh scripts/train_lsr_pretrain.sh
  • train the full pipeline: after the pre-training is complete, run the following command
sh scripts/train_lsr_meta_learning.sh

Please, refer to the training scripts for details about different training configurations and how to set the correct flags for your training data.

Owner
Moustafa Meshry
Moustafa Meshry
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022