PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

Related tags

Deep LearningLFT
Overview

LFT

PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf].

Contributions:

  • We make the first attempt to adapt Transformers to LF image processing, and propose a Transformer-based network for LF image SR.
  • We propose a novel paradigm (i.e., angular and spatial Transformers) to incorporate angular and spatial information in an LF.
  • With a small model size and low computational cost, our LFT achieves superior SR performance than other state-of-the-art methods.

Codes and Models:

Requirement

  • PyTorch 1.3.0, torchvision 0.4.1. The code is tested with python=3.6, cuda=9.0.
  • Matlab (For training/test data generation and performance evaluation)

Datasets

We used the EPFL, HCInew, HCIold, INRIA and STFgantry datasets for both training and test. Please first download our dataset via Baidu Drive (key:7nzy) or OneDrive, and place the 5 datasets to the folder ./datasets/.

Train

  • Run Generate_Data_for_Training.m to generate training data. The generated data will be saved in ./data_for_train/ (SR_5x5_2x, SR_5x5_4x).
  • Run train.py to perform network training. Example for training LFT on 5x5 angular resolution for 4x/2xSR:
    $ python train.py --model_name LFT --angRes 5 --scale_factor 4 --batch_size 4
    $ python train.py --model_name LFT --angRes 5 --scale_factor 2 --batch_size 8
    
  • Checkpoint will be saved to ./log/.

Test

  • Run Generate_Data_for_Test.m to generate test data. The generated data will be saved in ./data_for_test/ (SR_5x5_2x, SR_5x5_4x).
  • Run test.py to perform network inference. Example for test LFT on 5x5 angular resolution for 4x/2xSR:
    python test.py --model_name LFT --angRes 5 --scale_factor 4 \ 
    --use_pre_pth True --path_pre_pth './pth/LFT_5x5_4x_epoch_50_model.pth
    
    python test.py --model_name LFT --angRes 5 --scale_factor 2 \ 
    --use_pre_pth True --path_pre_pth './pth/LFT_5x5_2x_epoch_50_model.pth
    
  • The PSNR and SSIM values of each dataset will be saved to ./log/.

Results:

  • Quantitative Results

  • Efficiency

  • Visual Comparisons

  • Angular Consistency

  • Spatial-Aware Angular Modeling


Citiation

If you find this work helpful, please consider citing:

@Article{LFT,
    author    = {Liang, Zhengyu and Wang, Yingqian and Wang, Longguang and Yang, Jungang and Zhou, Shilin},
    title     = {Light Field Image Super-Resolution with Transformers},
    journal   = {arXiv preprint},
    month     = {August},
    year      = {2021},   
}


Contact

Any question regarding this work can be addressed to [email protected].

Owner
Squidward
Squidward
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022