Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

Related tags

Deep Learningaccentor
Overview

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues

Overview

ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialogues from Schema Guided Dialogue (SGD) and MultiWOZ 2.1, allowing researchers to study contexutal addition of chit-chat utterances for virtual assistants, to make task-oriented dialogues more engaging and social.

We also provide three new models for ACCENTOR explicitly trained to predict user goals and to generate contextually relevant chit-chat responses.

Automatic and human evaluations show that, compared with the state of-the-art task-oriented baseline, our models can code-switch between task and chit-chat to be more engaging, interesting, knowledgeable, and humanlike, while maintaining competitive task performance.

For more details, please refer to this paper.

Data

  • v1.0/candidates-{sgd,multiwoz}.json: Annotated chit-chat candidates. The format is as follows.
{
 "dialogue 1 / id": [
  [
   dialogue 1 / candidate 1 / turn id,
   dialogue 1 / candidate 1 / position,
   dialogue 1 / candidate 1 / candidate,
   dialogue 1 / candidate 1 / label,
   dialogue 1 / candidate 1 / justification
  ],
  [
   dialogue 1 / candidate 2 / turn id,
   ...
  ],
  ...
 ],
 "dialogue 2 / id": [
  ...
 ],
 ...
}
  • Folder v1.0/accentor-sgd: The augmented SGD dataset. The format follows the original SGD dataset, with two additional keys (i.e., beginning and end) that store lists of (candidate, label, justification) tuples.

    • The folder is generated by v1.0/accentor-sgd.py (with v1.0/candidates-sgd.json and the original SGD dataset as input). Usage: python3 v1.0/accentor-sgd.py --help.
  • v1.0/accentor-multiwoz-1k.json: 1K augmented MultiWOZ 2.1 dialogues. The format follows the original MultiWOZ dataset, with two additional keys (i.e., beginning and end) that store lists of (candidate, label, justification) tuples.

    • The file is generated by v1.0/accentor-multiwoz.py (with v1.0/candidates-multiwoz.json and the original MultiWOZ 2.1 dataset as input). Usage: python3 v1.0/accentor-multiwoz.py --help.

Baseline Models

Preparation

  • Dependencies: ParlAI (af12799a) and Transformers (2.11.0)

  • Run the following commands to prepare the data for model training and the off-the-shelf models (i.e., a task-oriented dialogue model and a chit-chat model) for Arranger and Rewriter.

cp -r ./v1.0/accentor-sgd .

python3 gen_delex.py

python3 gen_parlai_data.py

parlai train_model -t fromfile:parlaiformat --fromfile_datapath ./parlai --fromfile-datatype-extension true  -m transformer/generator --init-model zoo:tutorial_transformer_generator/model --dict-file zoo:tutorial_transformer_generator/model.dict --embedding-size 512 --n-layers 8 --ffn-size 2048 --dropout 0.1 --n-heads 16 --learn-positional-embeddings True --n-positions 512 --variant xlm --activation gelu --skip-generation True --fp16 True --text-truncate 512 --label-truncate 128 --dict-tokenizer bpe --dict-lower True -lr 1e-06 --optimizer adamax --lr-scheduler reduceonplateau --gradient-clip 0.1 -veps 0.25 --betas 0.9,0.999 --update-freq 1 --attention-dropout 0.0 --relu-dropout 0.0 --skip-generation True -vp 15 -stim 60 -vme 20000 -bs 16 -vmt ppl -vmm min --save-after-valid True --model-file ./train_90M

parlai interactive -mf ./train_90M < lm.input.dev.cc.txt > lm.output.dev.cc.txt

parlai interactive -mf ./train_90M < lm.input.test.cc.txt > lm.output.test.cc.txt

python3 run_language_modeling.py --output_dir=output_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.txt --do_eval  --eval_data_file=lm.input.dev.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.txt --output dev.inference.gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.txt --output test.inference.gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

SimpleTOD+

  • Dependency: Transformers (2.11.0)
python3 run_language_modeling.py --output_dir=output_both_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.both.txt --do_eval  --eval_data_file=lm.input.dev.both.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.txt --output dev.inference.both_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_both_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.txt --output test.inference.both_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_both_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

Arranger

  • Dependency: Transformers (2.2.0)
python3 gen_arranger_input.py

python3 run_multiple_choice.py --model_type roberta --task_name acc --model_name_or_path roberta-base --do_train --do_eval --do_test --do_lower_case --data_dir . --learning_rate 2e-5 --num_train_epochs 3 --max_seq_length 512 --output_dir acc_arranger_roberta_base_3epoch --per_gpu_eval_batch_size=16 --per_gpu_train_batch_size=1 --gradient_accumulation_steps 24 --overwrite_output --save_steps 10000

python3 gen_arranger_output.py

Rewriter

  • Dependency: Transformers 2.11.0
python3 gen_rewriter_data.py

python3 run_language_modeling.py --output_dir=output_ff_gpt2_10epoch_1e-3_fp16 --model_type=gpt2 --model_name_or_path=gpt2 --do_train --train_data_file=lm.input.train.ff.txt  --do_eval --eval_data_file=lm.input.dev.ff.txt --per_device_train_batch_size 2 --gradient_accumulation_steps 18 --num_train_epochs 10 --learning_rate 1e-3 --fp16 --overwrite_output_dir

python3 run_generation.py --input lm.input.dev.eval.ff.txt --output dev.inference.ff_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_ff_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

python3 run_generation.py --input lm.input.test.eval.ff.txt --output test.inference.ff_gpt2_10epoch_1e-3_fp16.json --model_name_or_path ./output_ff_gpt2_10epoch_1e-3_fp16 --eos_token_id 50262

Evaluation

  • Dependency: the official evaluation script of SGD

  • Pass the output inference files (i.e., {dev,test}.inference*.json) to gen_predict.py to obtain act-slot F1 and BLEU-4 scores. For example,

python3 gen_predict.py --inference test.inference.both_gpt2_10epoch_1e-3_fp16.json --split test
  • The above command will also generate a folder (named ./prediction/ by default), which can be passed to the official evaluation script of SGD to obtain the joint goal accuracy and average accuracy. For example,
python3 -m schema_guided_dst.evaluate --dstc8_data_dir ./simpletod/ --prediction_dir ./prediction/test/ --eval_set test --output_metric_file simpletod+_test_result.json

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following article (pdf):

@inproceedings{sun2020adding,
  title={Adding Chit-Chat to Enhance Task-Oriented Dialogues},
  author={Sun, Kai and Moon, Seungwhan and Crook, Paul and Roller, Stephen and Silvert, Becka and Liu, Bing and Wang, Zhiguang and Liu, Honglei and Cho, Eunjoon and Cardie, Claire},
  booktitle={Proceedings of the NAACL-HLT},
  year={2021},
  url={https://arxiv.org/abs/2010.12757}
}

License

ACCENTOR is released under CC-BY-SA-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Özlem Taşkın 0 Feb 23, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022