KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Overview

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems

License: MIT

This is the implementation of the paper:

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems. Andrea Madotto, Samuel Cahyawijaya, Genta Indra Winata, Yan Xu, Zihan Liu, Zhaojiang Lin, Pascale Fung Findings of EMNLP 2020 [PDF]

If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:

@article{madotto2020learning,
  title={Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems},
  author={Madotto, Andrea and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Yan and Liu, Zihan and Lin, Zhaojiang and Fung, Pascale},
  journal={arXiv preprint arXiv:2009.13656},
  year={2020}
}

Abstract

Task-oriented dialogue systems are either modularized with separate dialogue state tracking (DST) and management steps or end-to-end trainable. In either case, the knowledge base (KB) plays an essential role in fulfilling user requests. Modularized systems rely on DST to interact with the KB, which is expensive in terms of annotation and inference time. End-to-end systems use the KB directly as input, but they cannot scale when the KB is larger than a few hundred entries. In this paper, we propose a method to embed the KB, of any size, directly into the model parameters. The resulting model does not require any DST or template responses, nor the KB as input, and it can dynamically update its KB via finetuning. We evaluate our solution in five taskoriented dialogue datasets with small, medium, and large KB size. Our experiments show that end-to-end models can effectively embed knowledge bases in their parameters and achieve competitive performance in all evaluated datasets.

Knowledge-embedded Dialogue:

During training, the KE dialogues are generated by fulfilling the *TEMPLATE* with the *user goal query* results, and they are used to embed the KB into the model parameter theta. At testing time, the model does not use any external knowledge to generate the correct responses.

Dependencies

We listed our dependencies on requirements.txt, you can install the dependencies by running

❱❱❱ pip install -r requirements.txt

In addition, our code also includes fp16 support with apex. You can find the package from https://github.com/NVIDIA/apex.

Experiments

bAbI-5

Dataset Download the preprocessed dataset and put the zip file inside the ./knowledge_embed/babi5 folder. Extract the zip file by executing

❱❱❱ cd ./knowledge_embed/babi5
❱❱❱ unzip dialog-bAbI-tasks.zip

Generate the delexicalized dialogues from bAbI-5 dataset via

❱❱❱ python3 generate_delexicalization_babi.py

Generate the lexicalized data from bAbI-5 dataset via

❱❱❱ python generate_dialogues_babi5.py --dialogue_path ./dialog-bAbI-tasks/dialog-babi-task5trn_record-delex.txt --knowledge_path ./dialog-bAbI-tasks/dialog-babi-kb-all.txt --output_folder ./dialog-bAbI-tasks --num_augmented_knowledge <num_augmented_knowledge> --num_augmented_dialogue <num_augmented_dialogues> --random_seed 0

Where the maximum <num_augmented_knowledge> is 558 (recommended) and <num_augmented_dialogues> is 264 as it is corresponds to the number of knowledge and number of dialogues in bAbI-5 dataset.

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on bAbI training set. You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/babi5
❱❱❱ python main.py --model_checkpoint gpt2 --dataset BABI --dataset_path ../../knowledge_embed/babi5/dialog-bAbI-tasks --n_epochs <num_epoch> --kbpercentage <num_augmented_dialogues>

Notes that the value of --kbpercentage is equal to <num_augmented_dialogues> the one that comes from the lexicalization. This parameter is used for selecting the augmentation file to embed into the train dataset.

You can evaluate the model by executing the following script

❱❱❱ python evaluate.py --model_checkpoint <model_checkpoint_folder> --dataset BABI --dataset_path ../../knowledge_embed/babi5/dialog-bAbI-tasks

Scoring bAbI-5 To run the scorer for bAbI-5 task model, you can run the following command. Scorer will read all of the result.json under runs folder generated from evaluate.py

python scorer_BABI5.py --model_checkpoint <model_checkpoint> --dataset BABI --dataset_path ../../knowledge_embed/babi5/dialog-bAbI-tasks --kbpercentage 0

CamRest

Dataset

Download the preprocessed dataset and put the zip file under ./knowledge_embed/camrest folder. Unzip the zip file by executing

❱❱❱ cd ./knowledge_embed/camrest
❱❱❱ unzip CamRest.zip

Generate the delexicalized dialogues from CamRest dataset via

❱❱❱ python3 generate_delexicalization_CAMREST.py

Generate the lexicalized data from CamRest dataset via

❱❱❱ python generate_dialogues_CAMREST.py --dialogue_path ./CamRest/train_record-delex.txt --knowledge_path ./CamRest/KB.json --output_folder ./CamRest --num_augmented_knowledge <num_augmented_knowledge> --num_augmented_dialogue <num_augmented_dialogues> --random_seed 0

Where the maximum <num_augmented_knowledge> is 201 (recommended) and <num_augmented_dialogues> is 156 quite huge as it is corresponds to the number of knowledge and number of dialogues in CamRest dataset.

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on CamRest training set. You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/camrest/
❱❱❱ python main.py --model_checkpoint gpt2 --dataset CAMREST --dataset_path ../../knowledge_embed/camrest/CamRest --n_epochs <num_epoch> --kbpercentage <num_augmented_dialogues>

Notes that the value of --kbpercentage is equal to <num_augmented_dialogues> the one that comes from the lexicalization. This parameter is used for selecting the augmentation file to embed into the train dataset.

You can evaluate the model by executing the following script

❱❱❱ python evaluate.py --model_checkpoint <model_checkpoint_folder> --dataset CAMREST --dataset_path ../../knowledge_embed/camrest/CamRest

Scoring CamRest To run the scorer for bAbI 5 task model, you can run the following command. Scorer will read all of the result.json under runs folder generated from evaluate.py

python scorer_CAMREST.py --model_checkpoint <model_checkpoint> --dataset CAMREST --dataset_path ../../knowledge_embed/camrest/CamRest --kbpercentage 0

SMD

Dataset

Download the preprocessed dataset and put it under ./knowledge_embed/smd folder.

❱❱❱ cd ./knowledge_embed/smd
❱❱❱ unzip SMD.zip

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on SMD training set. Download the checkpoint and put it under ./modeling folder.

❱❱❱ cd ./knowledge_embed/smd
❱❱❱ mkdir ./runs
❱❱❱ unzip ./knowledge_embed/smd/SMD_gpt2_graph_False_adj_False_edge_False_unilm_False_flattenKB_False_historyL_1000000000_lr_6.25e-05_epoch_10_weighttie_False_kbpercentage_0_layer_12.zip -d ./runs

You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/smd
❱❱❱ python main.py --dataset SMD --lr 6.25e-05 --n_epochs 10 --kbpercentage 0 --layers 12

Prepare Knowledge-embedded dialogues

Firstly, we need to build databases for SQL query.

❱❱❱ cd ./knowledge_embed/smd
❱❱❱ python generate_dialogues_SMD.py --build_db --split test

Then we generate dialogues based on pre-designed templates by domains. The following command enables you to generate dialogues in weather domain. Please replace weather with navigate or schedule in dialogue_path and domain arguments if you want to generate dialogues in the other two domains. You can also change number of templates used in relexicalization process by changing the argument num_augmented_dialogue.

❱❱❱ python generate_dialogues_SMD.py --split test --dialogue_path ./templates/weather_template.txt --domain weather --num_augmented_dialogue 100 --output_folder ./SMD/test

Adapt fine-tuned GPT-2 model to the test set

❱❱❱ python evaluate_finetune.py --dataset SMD --model_checkpoint runs/SMD_gpt2_graph_False_adj_False_edge_False_unilm_False_flattenKB_False_historyL_1000000000_lr_6.25e-05_epoch_10_weighttie_False_kbpercentage_0_layer_12 --top_k 1 --eval_indices 0,303 --filter_domain ""

You can also speed up the finetuning process by running experiments parallelly. Please modify the GPU setting in #L14 of the code.

❱❱❱ python runner_expe_SMD.py 

MWOZ (2.1)

Dataset

Download the preprocessed dataset and put it under ./knowledge_embed/mwoz folder.

❱❱❱ cd ./knowledge_embed/mwoz
❱❱❱ unzip mwoz.zip

Prepare Knowledge-Embedded dialogues (You can skip this step, if you have downloaded the zip file above)

You can prepare the datasets by running

❱❱❱ bash generate_MWOZ_all_data.sh

The shell script generates the delexicalized dialogues from MWOZ dataset by calling

❱❱❱ python generate_delex_MWOZ_ATTRACTION.py
❱❱❱ python generate_delex_MWOZ_HOTEL.py
❱❱❱ python generate_delex_MWOZ_RESTAURANT.py
❱❱❱ python generate_delex_MWOZ_TRAIN.py
❱❱❱ python generate_redelex_augmented_MWOZ.py
❱❱❱ python generate_MWOZ_dataset.py

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on MWOZ training set. Download the checkpoint and put it under ./modeling folder.

❱❱❱ cd ./knowledge_embed/mwoz
❱❱❱ mkdir ./runs
❱❱❱ unzip ./mwoz.zip -d ./runs

You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/mwoz
❱❱❱ python main.py --model_checkpoint gpt2 --dataset MWOZ_SINGLE --max_history 50 --train_batch_size 6 --kbpercentage 100 --fp16 O2 --gradient_accumulation_steps 3 --balance_sampler --n_epochs 10

OpenDialKG

Getting Started We use neo4j community server edition and apoc library for processing graph data. apoc is used to parallelize the query in neo4j, so that we can process large scale graph faster

Before proceed to the dataset section, you need to ensure that you have neo4j (https://neo4j.com/download-center/#community) and apoc (https://neo4j.com/developer/neo4j-apoc/) installed on your system.

If you are not familiar with CYPHER and apoc syntaxes, you can follow the tutorial in https://neo4j.com/developer/cypher/ and https://neo4j.com/blog/intro-user-defined-procedures-apoc/

Dataset Download the original dataset and put the zip file inside the ./knowledge_embed/opendialkg folder. Extract the zip file by executing

❱❱❱ cd ./knowledge_embed/opendialkg
❱❱❱ unzip https://drive.google.com/file/d/1llH4-4-h39sALnkXmGR8R6090xotE0PE/view?usp=sharing.zip

Generate the delexicalized dialogues from opendialkg dataset via (WARNING: this requires around 12 hours to run)

❱❱❱ python3 generate_delexicalization_DIALKG.py

This script will produce ./opendialkg/dialogkg_train_meta.pt which will be use to generate the lexicalized dialogue. You can then generate the lexicalized dialogue from opendialkg dataset via

❱❱❱ python generate_dialogues_DIALKG.py --random_seed <random_seed> --batch_size 100 --max_iteration <max_iter> --stop_count <stop_count> --connection_string bolt://localhost:7687

This script will produce samples of dialogues at most batch_size * max_iter samples, but in every batch there is a possibility where there is no valid candidate and resulting in less samples. The number of generation is limited by another factor called stop_count which will stop the generation if the number of generated samples is more than equal the specified stop_count. The file will produce 4 files: ./opendialkg/db_count_records_{random_seed}.csv, ./opendialkg/used_count_records_{random_seed}.csv, and ./opendialkg/generation_iteration_{random_seed}.csv which are used for checking the distribution shift of the count in the DB; and ./opendialkg/generated_dialogue_bs100_rs{random_seed}.json which contains the generated samples.

Notes:

  • You might need to change the neo4j password inside generate_delexicalization_DIALKG.py and generate_dialogues_DIALKG.py manually.
  • Because there is a ton of possibility of connection in dialkg, we use sampling method to generate the data, so random seed is crucial if you want to have reproducible result

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on opendialkg training set. You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/opendialkg
❱❱❱ python main.py --dataset_path ../../knowledge_embed/opendialkg/opendialkg --model_checkpoint gpt2 --dataset DIALKG --n_epochs 50 --kbpercentage <random_seed> --train_batch_size 8 --valid_batch_size 8

Notes that the value of --kbpercentage is equal to <random_seed> the one that comes from the lexicalization. This parameter is used for selecting the augmentation file to embed into the train dataset.

You can evaluate the model by executing the following script

❱❱❱ python evaluate.py  --model_checkpoint <model_checkpoint_folder> --dataset DIALKG --dataset_path  ../../knowledge_embed/opendialkg/opendialkg

Scoring OpenDialKG To run the scorer for bAbI-5 task model, you can run the following command. Scorer will read all of the result.json under runs folder generated from evaluate.py

python scorer_DIALKG5.py --model_checkpoint <model_checkpoint> --dataset DIALKG  ../../knowledge_embed/opendialkg/opendialkg --kbpercentage 0

Further Details

For the details regarding to the experiments, hyperparameters, and Evaluation results you can find it in the main paper of and suplementary materials of our work.

Owner
CAiRE
CAiRE
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022