A PyTorch implementation of the architecture of Mask RCNN

Overview

EDIT (AS OF 4th NOVEMBER 2019):

  1. This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a resource to understanding the architecture of Mask R-CNN. It has been pointed out to me through multiple emails and comments on HackerNews that such a faulty implementation is to the detriment of the research endeavors in the deep learning community. It was a project that I had put together quite early in my academic career and I did not realize the scale of my mistake

  2. I intend to take care of the issues (the issues filed in this repository are representative) and make this code more "readable" and embellish it with better documentation so that it fulfills the purpose for which it was made. Unfortunately, as of right now, I am busy with my academics and cannot attend to this project. I shall start working on bettering this repository by mid-January to early February 2020. Until then, I have provided links to other implementations of Mask R-CNN that I think could help serve your purpose

  3. PR's fixing any one of the issues listed are always welcome and will allow me to get a headstart on this particular task of making this repository more presentable.

Once again I would like to apologize for any inconvenience caused

LINKS

  1. https://github.com/facebookresearch/detectron2 (PyTorch implementation)
  2. https://github.com/matterport/Mask_RCNN (Tensorflow implementation). Much of this repository was built using this repository as a reference

Mask-RCNN

A PyTorch implementation of the architecture of Mask RCNN

Decription of folders

  1. model.py includes the models of ResNet and FPN which were already implemented by the authors of the papers and reproduced in this implementation
  2. nms and RoiAlign are taken from Robb Girshick's implementation of faster RCNN
  3. Focal loss has been added to this implementtaion on lieu of better results as evidenced by the paper on RetinaNets

Mask-RCNN model:

alt text

Features:

  1. The part of the network responsible for bounding box detection derives it's inspiration from the faster RCNN model having a RPN working in tandem with a ConvNet
  2. The pooling layers present in the ConvNet round down or round up to the nearest integer when the stride is not a divisor of the receptive field, which tends to either lose or assume "information" from the image respectively at the non integral points.
  3. ROI align was proposed to deal with this, wherein bilinear interpolation is used to detect the values at the non integral values of the pixels
  4. Using a more complex interpolation scheme( cubic interpolation -> 16 additional features) offers a slightly better result when this model was tested, however not enough to justify the additional complexity
  5. Cross entropy loss when summed over a huge number of proposals tends to take a huge value for proposals that have a high confidence metric thereby dwarfing the contribution from the proposals of interest. Focal Loss was proposed to do away with this problem
  6. However Focal loss gives much better results with single stage networks. This is because a two stage network has some discriminative policy to deal with this class imbalance something which the single stage networks don't enjoy.

If you find any issue in this repsoritory, feel free to fork this repository and submit a PR with the necessary changes

Owner
Sai Himal Allu
Research Assistant at CVIT-IIITH Ex: Undergrad at IIT Roorkee
Sai Himal Allu
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022