Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Overview

Follow the development of our desktop client here

Paaster

Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Preview

Video of paaster in action! Mobile preview

Features

Looking to build a client for paaster?

Check out our Integration documentation

Security

What is E2EE?

E2EE or end to end encryption is a zero trust encryption methodology. When you paste code into paaster the code is encrypted locally with a secret generated on your browser. This secret is never shared with the server & only people you share the link with can view the paste.

Can I trust a instance of paaster not hosted by me?

No. Anyone could modify the functionality of paaster to expose your secret key to the server. We recommend using a instance you host or trust.

How are client secrets stored?

Client-sided secrets are stored in localStorage on paste creation (for paste history.) Anything else would be retrievable by the server or be overly complicated. This does make paaster vulnerable to malicious javascript being executed, but this would require malicious javascript to be present when the svelte application is built. If this was the case you'd have bigger issues, like the module just reading all inputs & getting the plain text paste.

How are client secrets transported?

Paaster uses URI fragments to transport secrets, according to the Mozilla foundation URI fragments aren't meant to be sent to the server. Bitwarden also has a article covering this usage here.

How are server secrets stored?

Server-sided secrets are stored in localStorage on paste creation, allowing you to modify or delete pastes later on. Server-sided secrets are generated on the server using the python secrets module & are stored in the database using bcrypt hashing.

Cipher

paaster is built using the forge module, using AES-256 in CBC mode with PKCS7 padding & PBKDF2 key derivation at 50,000 iterations. More details are located in our Integration documentation.

Shortcuts

  • Ctrl+V - Paste code.
  • Ctrl+S - Download code as file.
  • Ctrl+A - Copy all code to clipboard.
  • Ctrl+X - Copy URL to clipboard.

Requesting features

  • Open a new issue to request a feature (one issue per feature.)

What we won't add

  • Paste editing.
    • paaster isn't a text editor, it's a pastebin.
  • Paste button.
    • paaster isn't a text editor, when code is inputted it will always be automatically uploaded.
  • Optional encryption.
    • paaster will never have opt-in / opt-out encryption, encryption will always be present.

Setup

Production with Docker

  • git clone --branch Production https://github.com/WardPearce/paaster
  • Configure docker-compose.yml
  • Proxy exposed ports using Nginx (or whatever reverse proxy you prefer.)
  • FRONTEND_PROXIED should be the proxied address for "paaster_frontend". E.g. for paaster.io this is "https://paaster.io"
  • VITE_BACKEND should be the proxied address for "paaster_starlette". E.g. for paaster.io this is "https://api.paaster.io"
  • sudo docker-compose build; sudo docker-compose up -d

Using Rclone

Using rclone with Docker Compose

Basically the most important part is to install fuse, create /var/lib/docker-plugins/rclone/config & /var/lib/docker-plugins/rclone/cache, install the docker plugin docker plugin install rclone/docker-volume-rclone:amd64 args="-v" --alias rclone --grant-all-permissions, configure the rclone.conf for the storage service you want to use & then configure your docker compose to use the rclone volume. Example rclone docker compose.

Production without docker

This setup is not recommended & requires more research / knowledge.

  • git clone --branch Production https://github.com/WardPearce/paaster.
  • cd paaster-frontend
  • Create .env
    • VITE_NAME - The name displayed on the website.
    • VITE_BACKEND - The URL of the API.
  • Install nodejs
    • npm install
    • npm run build
  • Serve files generated in dist with Nginx (or whatever reverse proxy you use.)
  • cd paaster-backend
  • Install Python 3.7+
    • pip3 install -r requirements.txt
    • Configure main.py following the guide for uvicorn.
  • Pass environmental variables
    • REDIS_HOST
    • REDIS_PORT
    • MONGO_IP
    • MONGO_PORT
    • MONGO_DB
    • FRONTEND_PROXIED - The URL of the Frontend.
  • Proxy port with Nginx (or whatever reverse proxy you use.)

Development

  • git clone https://github.com/WardPearce/paaster.
  • cd paaster-frontend
  • Create .env
    • VITE_NAME - The name displayed on the website.
    • VITE_BACKEND - The URL of the API.
  • Install nodejs
    • npm install
    • npm run dev
  • cd paaster-backend
  • Pass environmental variables
    • REDIS_HOST
    • REDIS_PORT
    • MONGO_IP
    • MONGO_PORT
    • MONGO_DB
    • FRONTEND_PROXIED - The URL of the Frontend.
  • Install Python 3.7+
    • pip3 install -r requirements.txt
    • Run main.py
Owner
Ward
Privacy advocate & open source developer
Ward
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023