Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

Overview

README

Code for the paper Asymptotics of L2 Regularized Network Embeddings.

Requirements

Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0.24.1, tqdm, along with any other packages required for the above three packages.

Code

To run node classification or link prediction experiments, run

python -m code.train_embed [[args]]

or

python -m code.train_embed_link [[args]]

from the command line respectively, where [[args]] correspond to the command line arguments for each function. Note that the scripts expect to run from the parent directory of the code folder; you will need to change the import statements in the associated python files if you move them around. The -h command line argument will display the arguments (with descriptions) of each of the two files.

train_embed.py arguments

short long default help
-h --help show this help message and exit
--dataset Cora Dataset to perform training on. Available options: Cora,CiteSeer,PubMedDiabetes
--emb-size 128 Embedding dimension. Defaults to 128.
--reg-weight 0.0 Weight to use for L2 regularization. If norm_reg is True, then reg_weight/num_of_nodes is used instead.
--norm-reg Boolean for whether to normalize the L2 regularization weight by the number of nodes in the graph. Defaults to false.
--method node2vec Algorithm to perform training on. Available options: node2vec,GraphSAGE,GCN,DGI
--verbose 1 Level of verbosity. Defaults to 1.
--epochs 5 Number of epochs through the dataset to be used for training.
--optimizer Adam Optimization algorithm to use for training.
--learning-rate 0.001 Learning rate to use for optimization.
--batch-size 64 Batch size used for training.
--train-split [0.01, 0.025, 0.05] Percentage(s) to use for the training split when using the learned embeddings for downstream classification tasks.
--train-split-num 25 Decides the number of random training/test splits to use for evaluating performance. Defaults to 50.
--output-fname None If not None, saves the hyperparameters and testing results to a .json file with filename given by the argument.
--node2vec-p 1.0 Hyperparameter governing probability of returning to source node.
--node2vec-q 1.0 Hyperparameter governing probability of moving to a node away from the source node.
--node2vec-walk-number 50 Number of walks used to generate a sample for node2vec.
--node2vec-walk-length 5 Walk length to use for node2vec.
--dgi-sampler fullbatch Specifies either a fullbatch or a minibatch sampling scheme for DGI.
--gcn-activation ['relu'] Determines the activations of each layer within a GCN. Defaults to a single layer with relu activation.
--graphSAGE-aggregator mean Specifies the aggreagtion rule used in GraphSAGE. Defaults to mean pooling.
--graphSAGE-nbhd-sizes [10, 5] Specify multiple neighbourhood sizes for sampling in GraphSAGE. Defaults to [10, 5].
--tensorboard If toggles, saves Tensorboard logs for debugging purposes.
--visualize-embeds None If specified with a directory, saves an image of a TSNE 2D projection of the learned embeddings at the specified directory.
--save-spectrum None If specifies, saves the spectrum of the learned embeddings output by the algorithm.

train_embed_link.py arguments

short long default help
-h --help show this help message and exit
--dataset Cora Dataset to perform training on. Available options: Cora,CiteSeer,PubMedDiabetes
--emb-size 128 Embedding dimension. Defaults to 128.
--reg-weight 0.0 Weight to use for L2 regularization. If norm_reg is True, then reg_weight/num_of_nodes is used instead.
--norm-reg Boolean for whether to normalize the L2 regularization weight by the number of nodes in the graph. Defaults to false.
--method node2vec Algorithm to perform training on. Available options: node2vec,GraphSAGE,GCN,DGI
--verbose 1 Level of verbosity. Defaults to 1.
--epochs 5 Number of epochs through the dataset to be used for training.
--optimizer Adam Optimization algorithm to use for training.
--learning-rate 0.001 Learning rate to use for optimization.
--batch-size 64 Batch size used for training.
--test-split 0.1 Split of edge/non-edge set to be used for testing.
--output-fname None If not None, saves the hyperparameters and testing results to a .json file with filename given by the argument.
--node2vec-p 1.0 Hyperparameter governing probability of returning to source node.
--node2vec-q 1.0 Hyperparameter governing probability of moving to a node away from the source node.
--node2vec-walk-number 50 Number of walks used to generate a sample for node2vec.
--node2vec-walk-length 5 Walk length to use for node2vec.
--gcn-activation ['relu'] Specifies layers in terms of their output activation (either relu or linear), with the number of arguments determining the length of the GCN. Defaults to a single layer with relu activation.
--graphSAGE-aggregator mean Specifies the aggreagtion rule used in GraphSAGE. Defaults to mean pooling.
--graphSAGE-nbhd-sizes [10, 5] Specify multiple neighbourhood sizes for sampling in GraphSAGE. Defaults to [25, 10].
Owner
Andrew Davison
Andrew Davison
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022