Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Overview

Addition to Original Barnaba Code:

This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'.

Please refer original github here: https://github.com/srnas/barnaba

Following files are modified to include calculation of RNA pseudotorsion angles:

nucleic.py, functions.py, definitions.py, and commandline.py

Definitions of RNA pseudotorsion angles:

Please refer to this nice blog by Dr. Xiang-Jun Lu (x3DNA-DSSR software page) for definitions of pseudotorsions:

https://x3dna.org/highlights/pseudo-torsions-to-simplify-the-representation-of-dna-rna-backbone-conformation

Requirements

Barnaba requires:

  • Python 2.7.x or > 3.3
  • Numpy
  • Scipy
  • Mdtraj 1.9
  • future

Barnaba requires mdtraj (http://mdtraj.org/) for manipulating structures and trajectories. To perform cluster analysis, scikit-learn is required too.

Required packages can be installed using pip, e.g.:

pip install mdtraj

Installation (if you want RNA pseudotorsions !!!)

git clone https://github.com/mandar5335/barnaba_pseudotor

then move to the barnaba directory and run the command

pip install -e .

Usage:

RNA pseudotorsions can be calculated using the command line or in jupyter-notebook.

command line:

barnaba TORSION --pseudo --pdb foo.pdb

Jupyter Notebook:

import barnaba as bb
from barnaba import definitions
angle, res =  bb.eta_theta_angles("foo.pdb")
definitions.pseudo_angles

This will calculate four pseudotorsions: ['eta', 'theta', 'eta_prime', 'theta_prime']

References

[1] Bottaro, Sandro, Francesco Di Palma, and Giovanni Bussi.
"The role of nucleobase interactions in RNA structure and dynamics."
Nucleic acids research 42.21 (2014): 13306-13314.

[2] Pinamonti, Giovanni, et al.
"Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments."
Nucleic acids research 43.15 (2015): 7260-7269.

If you use Barnaba in your work, please cite the following paper::

@article{bottaro2019barnaba,
	title={Barnaba: software for analysis of nucleic acid structures and trajectories},
	author={Bottaro, Sandro and Bussi, Giovanni and Pinamonti, Giovanni and Rei{\ss}er, Sabine and Boomsma, Wouter and Lindorff-Larsen, Kresten},
	journal={RNA},
	volume={25},
	number={2},
	pages={219--231},
	year={2019},
	publisher={Cold Spring Harbor Lab}
}
Owner
Mandar Kulkarni
Mandar Kulkarni
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022