A general, feasible, and extensible framework for classification tasks.

Overview

Pytorch Classification

  • A general, feasible and extensible framework for 2D image classification.

Features

  • Easy to configure (model, hyperparameters)
  • Training progress monitoring and visualization
  • Weighted sampling / weighted loss / kappa loss / focal loss for imbalance dataset
  • Kappa metric for evaluating model on imbalance dataset
  • Different learning rate schedulers and warmup support
  • Data augmentation
  • Multiple GPUs support

Installation

Recommended environment:

  • python 3.8+
  • pytorch 1.7.1+
  • torchvision 0.8.2+
  • tqdm
  • munch
  • packaging
  • tensorboard

To install the dependencies, run:

$ git clone https://github.com/YijinHuang/pytorch-classification.git
$ cd pytorch-classification
$ pip install -r requirements.txt

How to use

1. Use one of the following two methods to build your dataset:

  • Folder-form dataset:

Organize your images as follows:

├── your_data_dir
    ├── train
        ├── class1
            ├── image1.jpg
            ├── image2.jpg
            ├── ...
        ├── class2
            ├── image3.jpg
            ├── image4.jpg
            ├── ...
        ├── class3
        ├── ...
    ├── val
    ├── test

Here, val and test directory have the same structure of train. Then replace the value of 'data_path' in BASIC_CONFIG in configs/default.yaml with path to your_data_dir and keep 'data_index' as null.

  • Dict-form dataset:

Define a dict as follows:

your_data_dict = {
    'train': [
        ('path/to/image1', 0), # use int. to represent the class of images (start from 0)
        ('path/to/image2', 0),
        ('path/to/image3', 1),
        ('path/to/image4', 2),
        ...
    ],
    'test': [
        ('path/to/image5', 0),
        ...
    ],
    'val': [
        ('path/to/image6', 0),
        ...
    ]
}

Then use pickle to save it:

import pickle
pickle.dump(your_data_dict, open('path/to/pickle/file', 'wb'))

Finally, replace the value of 'data_index' in BASIC_CONFIG in configs/default.yaml with 'path/to/pickle/file' and set 'data_path' as null.

2. Update your training configurations and hyperparameters in configs/default.yaml.

3. Run to train:

$ CUDA_VISIBLE_DEVICES=x python main.py

Optional arguments:

-c yaml_file      Specify the config file (default: configs/default.yaml)
-o                Overwrite save_path and log_path without warning
-p                Print configs before training

4. Monitor your training progress in website 127.0.0.1:6006 by running:

$ tensorborad --logdir=/path/to/your/log --port=6006

Tips to use tensorboard on a remote server

Owner
Eugene
Eugene
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022