Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

Overview

DNA

This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation.

Illustration of DNA. Each cell of the supernet is trained independently to mimic the behavior of the corresponding teacher block.

Comparison of model ranking for DNA vs. DARTS, SPOS and MnasNet under two different hyper-parameters.

Our Trained Models

Usage

1. Requirements

2. Searching

The code for supernet training, evaluation and searching is under searching directory.

  • cd searching

i) Train & evaluate the block-wise supernet with knowledge distillation

  • Modify datadir in initialize/data.yaml to your ImageNet path.
  • Modify nproc_per_node in dist_train.sh to suit your GPU number. The default batch size is 64 for 8 GPUs, you can change batch size and learning rate in initialize/train_pipeline.yaml
  • By default, the supernet will be trained sequentially from stage 1 to stage 6 and evaluate after each stage. This will take about 2 days on 8 GPUs with EfficientNet B7 being the teacher. Resuming from checkpoints is supported. You can also change start_stage in initialize/train_pipeline.yaml to force start from a intermediate stage without loading checkpoint.
  • sh dist_train.sh

ii) Search for the best architecture under constraint.

Our traversal search can handle a search space with 6 ops in each layer, 6 layers in each stage, 6 stages in total. A search process like this should finish in half an hour with a single cpu. To perform search over a larger search space, you can manually divide the search space or use other search algorithms such as Evolution Algorithms to process our evaluated architecture potential files.

  • Copy the path of architecture potential files generated in step i) to potential_yaml in process_potential.py. Modify the constraint in process_potential.py.
  • python process_potential.py

3. Retraining

The retraining code is simplified from the repo: pytorch-image-models and is under retraining directory.

  • cd retraining

  • Retrain our models or your searched models

    • Modify the run_example.sh: change data path and hyper-params according to your requirements
    • Add your searched model architecture to model.py. You can also use our searched and predefined DNA models.
    • sh run_example.sh
  • You can evaluate our models with the following command:
    python validate.py PATH/TO/ImageNet/validation --model DNA_a --checkpoint PATH/TO/model.pth.tar

    • PATH/TO/ImageNet/validation should be replaced by your validation data path.
    • --model : DNA_a can be replaced by DNA_b, DNA_c, DNA_d for our different models.
    • --checkpoint : Suggest the path of your downloaded checkpoint here.
Owner
Changlin Li
Changlin Li
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022