PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Related tags

Deep Learningczsl
Overview

Compositional Zero-Shot Learning

This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learning and Open World Compositional Zero-Shot Learning. The code provides the implementation of the methods CGE, CompCos together with other baselines (e.g. SymNet, AoP, TMN, LabelEmbed+,RedWine). It also provides train and test for the Open World CZSL setting and the new GQA benchmark.

Setup

  1. Clone the repo

  2. We recommend using Anaconda for environment setup. To create the environment and activate it, please run:

    conda env create --file environment.yml
    conda activate czsl
  1. Go to the cloned repo and open a terminal. Download the datasets and embeddings, specifying the desired path (e.g. DATA_ROOT in the example):
    bash ./utils/download_data.sh DATA_ROOT
    mkdir logs

Training

Closed World. To train a model, the command is simply:

    python train.py --config CONFIG_FILE

where CONFIG_FILE is the path to the configuration file of the model. The folder configs contains configuration files for all methods, i.e. CGE in configs/cge, CompCos in configs/compcos, and the other methods in configs/baselines.

To run CGE on MitStates, the command is just:

    python train.py --config configs/cge/mit.yml

On UT-Zappos, the command is:

    python train.py --config configs/cge/utzappos.yml

Open World. To train CompCos (in the open world scenario) on MitStates, run:

    python train.py --config configs/compcos/mit/compcos.yml

To run experiments in the open world setting for a non-open world method, just add --open_world after the command. E.g. for running SymNet in the open world scenario on MitStates, the command is:

    python train.py --config configs/baselines/mit/symnet.yml --open_world

Note: To create a new config, all the available arguments are indicated in flags.py.

Test

Closed World. To test a model, the code is simple:

    python test.py --logpath LOG_DIR

where LOG_DIR is the directory containing the logs of a model.

Open World. To test a model in the open world setting, run:

    python test.py --logpath LOG_DIR --open_world

To test a CompCos model in the open world setting with hard masking, run:

    python test.py --logpath LOG_DIR_COMPCOS --open_world --hard_masking

References

If you use this code, please cite

@inproceedings{naeem2021learning,
  title={Learning Graph Embeddings for Compositional Zero-shot Learning},
  author={Naeem, MF and Xian, Y and Tombari, F and Akata, Zeynep},
  booktitle={34th IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021},
  organization={IEEE}
}

and

@inproceedings{mancini2021open,
  title={Open World Compositional Zero-Shot Learning},
  author={Mancini, M and Naeem, MF and Xian, Y and Akata, Zeynep},
  booktitle={34th IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021},
  organization={IEEE}
}

Note: Some of the scripts are adapted from AttributeasOperators repository. GCN and GCNII implementations are imported from their respective repositories. If you find those parts useful, please consider citing:

@inproceedings{nagarajan2018attributes,
  title={Attributes as operators: factorizing unseen attribute-object compositions},
  author={Nagarajan, Tushar and Grauman, Kristen},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={169--185},
  year={2018}
}
Owner
EML Tübingen
Explainable Machine Learning group at University of Tübingen
EML Tübingen
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023