李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

Overview

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长!

打滚卖萌求star求fork!

0.效果展示

1.模型简介

1.1AnimeGANv2

本文使用了animeGANv2进行了视频的风格迁移。
animeGANv2,顾名思义,是其前作AnimeGAN的改进版,改进方向主要在以下4点:

  • 解决了生成的图像中的高频伪影问题。
  • 它易于训练,并能直接达到论文所述的效果。
  • 进一步减少生成器网络的参数数量。(现在生成器大小 8.17Mb)
  • 尽可能多地使用来自BD电影的新的高质量的风格数据。
    效果图参考:
    animeGANv2
    本文则是使用了paddlepaddle预训练好的animeGANv2模型对李云龙名场面视频进行了风格化迁移,详情请看下文分解。

2.实现思路

flow

3.素材准备

首先要找到自己要操作的视频素材,将视频的音频单独提取出来备用
我自己找的资源放在了codes/videos/liyunlong文件夹下,是李云龙名场面:
你咋不敢跟旅长干一架呢!→旅长我给你跪下了 名场面

4.代码实操:

话不多说,首先是环境的基本配置

  • 安装基本环境
!pip install -r codes/PaddleGAN-develop/requirements.txt
  • 导入基本环境
import paddle 
import os 
import sys 
sys.path.insert(0,'codes/PaddleGAN-develop')
from ppgan.apps import AnimeGANPredictor

5.GAN它!

友情提示:此处最好使用GPU环境,cpu推理属实是有点点慢
进行模型的推理:

使用paddlepaddle预训练好的animeGANv2模型对视频进行风格迁移:
from ppgan.apps import AnimeGANPredictor
import cv2

predictor = AnimeGANPredictor('',None,)
video_src = 'codes/videos/liyunlong/格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4'
video_ = cv2.VideoCapture(video_src)
video_name_ = os.path.basename(video_src)
total_frames = video_.get(cv2.CAP_PROP_FRAME_COUNT)
fps_ = video_.get(cv2.CAP_PROP_FPS)
print("video {}, fps:{}, total frames:{}...".format(video_name_, fps_, total_frames))
frame_count_ = 0
save_per_frames = 1
dst_dir = 'codes/videos/liyunlong/'
out_video = cv2.VideoWriter('{}/hayao_{}'.format(dst_dir, video_name_),
                                cv2.VideoWriter_fourcc(*'DIVX'), int(fps_),
                                (int(video_.get(3)), int(video_.get(4))))
print('now begin...')
while True:
    ret_, frame_ = video_.read()
    if not ret_:  # or len(fps_list_) == 0:
        print('end of video...')
        break
    result_frame = predictor.anime_image_only(frame_)
    if frame_count_ % save_per_frames == 0:
        out_video.write(result_frame)
    frame_count_ = frame_count_ + 1
    if frame_count_ % 100 == 0:
        print("{}/{} processed...".format(frame_count_, int(total_frames)), flush=False)

6.最终视频

合成最终所需要的视频:

# 合并生成的视频和之前分离的音频:
!ffmpeg -i codes/videos/liyunlong/hayao_格式工厂混流 亮剑-03+亮剑-03+亮剑-04 00_00_23-.mp4 -i codes/videos/liyunlong/音频1.aac -c:v copy -c:a aac -strict experimental codes/videos/liyunlong/李云龙二次元化.mp4

这样就大功告成啦~~~
你可以在此基础上:

  • 更换你喜欢的视频
  • 更换其他paddle预训练好的模型
  • 甚至可以尝试自己动手训练定制化的模型!

打滚卖萌求star、fork!

PaddleGAN 的基础上做了些微小的改动,鸣谢.

Owner
oukohou
Hello there.
oukohou
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022