IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

Overview

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具

2022.2.8 添加、修改内容

增加备份文件fuzz规则

修改备份文件大小判断方式(pip3 install hurry-filesize)

修改备份文件是否存在的判断规则

修改为多线程扫描,内存占用更小

经测试 1h1g vps 500线程可以拉满

python3 ihoneyBakFileScan_Modify.py -t 500 -f url.txt

python3 requests pip3.5

1. 简介

1.1 网站备份文件泄露可能造成的危害:
1. 网站存在备份文件:网站存在备份文件,例如数据库备份文件、网站源码备份文件等,攻击者利用该信息可以更容易得到网站权限,导致网站被黑。
2. 敏感文件泄露是高危漏洞之一,敏感文件包括数据库配置信息,网站后台路径,物理路径泄露等,此漏洞可以帮助攻击者进一步攻击,敞开系统的大门。
3. 由于目标备份文件较大(xxx.G),可能存在更多敏感数据泄露
4. 该备份文件被下载后,可以被用来做代码审计,进而造成更大的危害
5. 该信息泄露会暴露服务器的敏感信息,使攻击者能够通过泄露的信息进行进一步入侵。
1.2 依赖环境
开发环境:
python3   python3.5.3
pip3.5    pip 10.0.1
requests  2.19.1
安装第三方依赖库:
pip3.5 install requests
pip3 install hurry-filesize
1.3 工具核心:
1. 常见后缀:
   * '.rar', '.zip', '.gz', '.sql.gz', '.tar.gz' ...
2. 文件头识别:
   * rar:526172211a0700cf9073
   * zip:504b0304140000000800
   * gz:1f8b080000000000000b,也包括'.sql.gz',取'1f8b0800' 作为keyword
   * tar.gz: 1f8b0800
   * sql:每种导出方式有不同的文件头
       * Adminer:  
       * mysqldump:     
       * phpMyAdmin:
       * navicat:   
3. 数据库备份导出方式识别:
   * 导出方式                      文件头字符:                    前10个16进制字符:
   * mysqldump:                   -- MySQL dump:               2d2d204d7953514c
   * phpMyAdmin:                  -- phpMyAdmin SQL Dump:      2d2d207068704d794164
   * navicat:                     /* Navicat :                 2f2a0a204e617669636174
   * Adminer:                     -- Adminer x.x.x MySQL dump: 2d2d2041646d696e6572  (5月9日新增xxx.sql)
   * Navicat MySQL Data Transfer: /* Navicat:                  2f2a0a4e617669636174
   * 一种未知导出方式:               -- -------:                  2d2d202d2d2d2d2d2d2d
4. 根据域名自动生成相关扫描字典:
    ➜  ihoneyBakFileScan python3.5 ihoneyBakFileScan.py -u https://www.ihoney.net.cn
    [ ] https://www.ihoney.net.cn/__zep__/js.zip
    [ ] https://www.ihoney.net.cn/faisunzip.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/www.rar
    [ ] https://www.ihoney.net.cn/ihoney.rar
    [*] https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.zip
    [ ] https://www.ihoney.net.cn/www.zip
    [ ] https://www.ihoney.net.cn/ihoney.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/www.gz
    [ ] https://www.ihoney.net.cn/ihoney.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/www.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.sql.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/www.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.tar.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/www.sql
    [ ] https://www.ihoney.net.cn/ihoney.sql
5. 自动记录扫描成功的备份地址到以时间命名的文件
    例如 20180616_16-28-14.txt:
    https://www.ihoney.net.cn/ihoney.tar.gz  size:0M
    https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M

2. 使用方式

参数:
    -h --help      查看工具使用帮助
    -f --url-file  批量时指定存放url的文件,每行url需要指定http://或者https://,否则默认使用http://
    -t --thread    指定线程数,建议100
    -u --url       单个url扫描时指定url
    -d --dict-file 自定义扫描字典
使用:
    批量url扫描    python3.5 ihoneyBakFileScan.py -t 100 -f url.txt
    单个url扫描    python3.5 ihoneyBakFileScan.py -u https://www.ihoneysec.top/
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn -d dict.txt

3. ChangeLog:

[2018.04.20]  首发T00ls:支持rar,zip后缀备份文件头识别,根据域名自动生成相关扫描字典,自动记录扫描成功的备份地址到文件
[2018.04.26]
              在原本扫描成功的备份地址后增加了备份大小,以方便快速识别有效备份。
              增加了.sql文件识别,也是识别文件头的方式,文件头我目前检测到三种,分别是不同方式导出的:1.mysql,2.phpmyadmin,3.navicat。
[2018.05.19]  新增识别Adminer导出的两种格式:baidu.sql、baodu.sql.gz
[2018.05.31]  新增Navicat MySQL Data Transfer备份导出方式和另一种未知导出方式
[2018.06.16]  修复支持https站扫描,并从旧项目中抽出来独立作为一个项目
[2018.06.18]  从多线程加队列改为多进程加进程池,提升扫描速度

4. 联系

* 在使用工具的过程中遇到任何异常、问题,或者你有更好的建议都可以联系作者,一起将这款不出名的小工具完善下去。
* 联系方式: QQ 102505481
2018年06月18日22:51:11
Owner
VMsec
专注渗透测试。
VMsec
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
LBK 35 Dec 26, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022