Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

Overview

fast-Bart

Reduction of BART model size by 3X, and boost in inference speed up to 3X

BART implementation of the fastT5 library (https://github.com/Ki6an/fastT5)

Pytorch model -> ONNX model -> Quantized ONNX model


Install

Install using requirements.txt file

git clone https://github.com/siddharth-sharma7/fast-Bart
cd fast-Bart
pip install -r requirements.txt

Usage

The export_and_get_onnx_model() method exports the given pretrained Bart model to onnx, quantizes it and runs it on the onnxruntime with default settings. The returned model from this method supports the generate() method of huggingface.

If you don't wish to quantize the model then use quantized=False in the method.

from fastBart import export_and_get_onnx_model
from transformers import AutoTokenizer

model_name = 'facebook/bart-base'
model = export_and_get_onnx_model(model_name)

tokenizer = AutoTokenizer.from_pretrained(model_name)
input = "This is a very long sentence and needs to be summarized."
token = tokenizer(input, return_tensors='pt')

tokens = model.generate(input_ids=token['input_ids'],
               attention_mask=token['attention_mask'],
               num_beams=3)

output = tokenizer.decode(tokens.squeeze(), skip_special_tokens=True)
print(output)

to run the already exported model use get_onnx_model()

you can customize the whole pipeline as shown in the below code example:

from fastBart import (OnnxBart, get_onnx_runtime_sessions,
                    generate_onnx_representation, quantize)
from transformers import AutoTokenizer

model_or_model_path = 'facebook/bart-base'

# Step 1. convert huggingfaces bart model to onnx
onnx_model_paths = generate_onnx_representation(model_or_model_path)

# Step 2. (recommended) quantize the converted model for fast inference and to reduce model size.
# The process is slow for the decoder and init-decoder onnx files (can take up to 15 mins)
quant_model_paths = quantize(onnx_model_paths)

# step 3. setup onnx runtime
model_sessions = get_onnx_runtime_sessions(quant_model_paths)

# step 4. get the onnx model
model = OnnxBart(model_or_model_path, model_sessions)

                      ...
custom output paths

By default, fastBart creates a models-bart folder in the current directory and stores all the models. You can provide a custom path for a folder to store the exported models. And to run already exported models that are stored in a custom folder path: use get_onnx_model(onnx_models_path="/path/to/custom/folder/")

from fastBart import export_and_get_onnx_model, get_onnx_model

model_name = "facebook/bart-base"
custom_output_path = "/path/to/custom/folder/"

# 1. stores models to custom_output_path
model = export_and_get_onnx_model(model_name, custom_output_path)

# 2. run already exported models that are stored in custom path
# model = get_onnx_model(model_name, custom_output_path)

Functionalities

  • Export any pretrained Bart model to ONNX easily.
  • The exported model supports beam search and greedy search and more via generate() method.
  • Reduce the model size by 3X using quantization.
  • Up to 3X speedup compared to PyTorch execution for greedy search and 2-3X for beam search.
Owner
Siddharth Sharma
Machine learning | NLP | Computer Vision
Siddharth Sharma
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023