Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Related tags

Deep Learning3DGenZ
Overview

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds

Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Renaud Marlet1)2)

1) Valeo.ai 2)LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, Franc

Accepted at 3DV 2021
Arxiv: Paper and Supp.
Poster or Presentation

Abstract: While there has been a number of studies on Zero-Shot Learning (ZSL) for 2D images, its application to 3D data is still recent and scarce, with just a few methods limited to classification. We present the first generative approach for both ZSL and Generalized ZSL (GZSL) on 3D data, that can handle both classification and, for the first time, semantic segmentation. We show that it reaches or outperforms the state of the art on ModelNet40 classification for both inductive ZSL and inductive GZSL. For semantic segmentation, we created three benchmarks for evaluating this new ZSL task, using S3DIS, ScanNet and SemanticKITTI. Our experiments show that our method outperforms strong baselines, which we additionally propose for this task.

If you want to cite this work:

@inproceedings{michele2021generative,
  title={Generative Zero-Shot Learning for Semantic Segmentation of {3D} Point Cloud},
  author={Michele, Bj{\"o}rn and Boulch, Alexandre and Puy, Gilles and Bucher, Maxime and Marlet, Renaud},
  booktitle={International Conference on 3D Vision (3DV)},
  year={2021}

Code

We provide in this repository the code and the pretrained models for the semantic segmentation tasks on SemanticKITTI and ScanNet.

To-Do:

  • We will add more experiments in the future (You could "watch" the repo to stay updated).

Code Semantic Segmentation

Installation

Dependencies: Please see requirements.txt for all needed code libraries. Tested with: Pytorch 1.6.0 and 1.7.1 (both Cuda 10.1). As torch-geometric is needed Pytoch >= 1.4.0 is required.

  1. Clone this repository.

  2. Download and/or install the backbones (ConvPoint is also necessary for our adaption of FKAConv. More information: ConvPoint, FKAConv, KP-Conv).

    • For ConvPoint:
    cd 3DGenZ/genz3d/convpoint/convpoint/knn
    python3 setup.py install --home="."
    
    • For FKAConv:
    cd 3DGenZ/genz3d/fkaconv
    pip install -ve . 
    
  3. Download the datasets.

    • For an out of the box start we recommend the following folder structure.
    ~/3DGenZ
    ~/data/scannet/
    ~/data/semantic_kitti/
    
  4. Download the semantic word embeddings and the pretrained backbones.

    • Place the semantic word embeddings in
    3DGenZ/genz3d/word_representations/
    
    • For SN, the pre-trained backbone model and the config file, are placed in
    3DGenZ/genz3d/fkaconv/examples/scannet/FKAConv_scannet_ZSL4
    

    The complete ZSL-trained model cpkt is placed in (create the folder if necessary)

    3DGenZ/genz3d/seg/run/scannet/
    
    • For SK, the pre-trained backbone-model, the "Log-..." folder is placed in
    3DGenZ/genz3d/kpconv/results
    

    And the complete ZSL-trained model ckpt is placed in

    3DGenZ/genz3d/seg/run/sk
    

Run training and evalutation

  1. Training (Classifier layer): In 3DGenZ/genz3d/seg/ you find for each of the datasets a folder with scripts to run the generator and classificator training.(see: SN,SK)
    • Alternatively, you can use the pretrained models from us.
  2. Evalutation: Is done with the evaluation functions of the backbones. (see: SN_eval, KP-Conv_eval)

Backbones

For the datasets we used different backbones, for which we highly rely on their code basis. In order to adapt them to the ZSL setting we made the change that during the backbone training no crops of point clouds with unseen classes are shown (if there is a single unseen class

  • ConvPoint [1] for the S3DIS dataset (and also partly used for the ScanNet dataset).
  • FKAConv [2] for the ScanNet dataset.
  • KPConv [3] for the SemanticKITTI dataset.

Datasets

For semantic segmentation we did experiments on 3 datasets.

  • SemanticKITTI [4][5].
  • S3DIS [6].
  • ScanNet[7].

Acknowledgements

For the Generator Training we use parts of the code basis of ZS3.
For the backbones we use the code of ConvPoint, FKAConv and KPConv.

References

[1] Boulch, A. (2020). ConvPoint: Continuous convolutions for point cloud processing. Computers & Graphics, 88, 24-34.
[2] Boulch, A., Puy, G., & Marlet, R. (2020). FKAConv: Feature-kernel alignment for point cloud convolution. In Proceedings of the Asian Conference on Computer Vision.
[3] Thomas, H., Qi, C. R., Deschaud, J. E., Marcotegui, B., Goulette, F., & Guibas, L. J. (2019). Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 6411-6420).
[4] Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., & Gall, J. (2019). Semantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 9297-9307).
[5] Geiger, A., Lenz, P., & Urtasun, R. (2012, June). Are we ready for autonomous driving? the kitti vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3354-3361). IEEE.
[6] Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., & Savarese, S. (2016). 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1534-1543).
[7] Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., & Nießner, M. (2017). Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5828-5839).

Updates

9.12.2021 Initial Code release

Licence

3DGenZ is released under the Apache 2.0 license.

The folder 3DGenZ/genz3d/kpconv includes large parts of code taken from KP-Conv and is therefore distributed under the MIT Licence. See the LICENSE for this folder.

The folder 3DGenZ/genz3d/seg/utils also includes files taken from https://github.com/jfzhang95/pytorch-deeplab-xception and is therefore also distributed under the MIT License. See the LICENSE for these files.

Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022