PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Related tags

Deep LearningCoMON
Overview

Conference Python 3.6 Supports Habitat Lab

Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents

This is a PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Project Webpage: https://shivanshpatel35.github.io/comon/

CoMON Task

In CoMON, an episode involves two heterogeneous agents -- a disembodied agent with access to oracle top-down map of the environment and an embodied agent which navigates and interacts with the environment. The two agents communicate and collaborate to perform the MultiON task.

Communication Mechanisms

Architecture Overview

Installing dependencies:

This code is tested on python 3.6.10, pytorch v1.4.0 and CUDA V9.1.85.

Install pytorch from https://pytorch.org/ according to your machine configuration.

This code uses older versions of habitat-sim and habitat-lab. Install them by running the following commands:

Installing habitat-sim:

git clone https://github.com/facebookresearch/habitat-sim.git
cd habitat-sim 
git checkout ae6ba1cdc772f7a5dedd31cbf9a5b77f6de3ff0f
pip install -r requirements.txt; 
python setup.py install --headless # (for headless machines with GPU)
python setup.py install # (for machines with display attached)

Installing habitat-lab:

git clone --branch stable https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab
git checkout 676e593b953e2f0530f307bc17b6de66cff2e867
pip install -e .

For installation issues in habitat, feel free to raise an issue in this repository, or in the corresponding habitat repository.

Setup

Clone the repository and install the requirements:

git clone https://github.com/saimwani/comon
cd comon
pip install -r requirements.txt

Downloading data and checkpoints

To evaluate pre-trained models and train new models, you will need to download the MultiON dataset, including objects inserted into the scenes, and model checkpoints for CoMON. Running download_data.sh from the root directory (CoMON/) will download the data and extract it to appropriate directories. Note that you are still required to download Matterport3D scenes after you run the script (see section on Download Matterport3D scenes below).

bash download_multion_data.sh

Download multiON dataset

You do not need to complete this step if you have successfully run the download_data.sh script above.

Run the following to download multiON dataset and cached oracle occupancy maps:

mkdir data
cd data
mkdir datasets
cd datasets
wget -O multinav.zip "http://aspis.cmpt.sfu.ca/projects/multion/multinav.zip"
unzip multinav.zip && rm multinav.zip
cd ../
wget -O objects.zip "http://aspis.cmpt.sfu.ca/projects/multion/objects.zip"
unzip objects.zip && rm objects.zip
wget -O default.phys_scene_config.json "http://aspis.cmpt.sfu.ca/projects/multion/default.phys_scene_config.json"
cd ../
mkdir oracle_maps
cd oracle_maps
wget -O map300.pickle "http://aspis.cmpt.sfu.ca/projects/multion/map300.pickle"
cd ../

Download Matterport3D scenes

The Matterport scene dataset and multiON dataset should be placed in data folder under the root directory (multiON/) in the following format:

CoMON/
  data/
    scene_datasets/
      mp3d/
        1LXtFkjw3qL/
          1LXtFkjw3qL.glb
          1LXtFkjw3qL.navmesh
          ...
    datasets/
      multinav/
        3_ON/
          train/
            ...
          val/
            val.json.gz
        2_ON
          ...
        1_ON
          ...

Download Matterport3D data for Habitat by following the instructions mentioned here.

Usage

Pre-trained models

You do not need to complete this step if you have successfully run the download_data.sh script above.

mkdir model_checkpoints

Download a model checkpoint for Unstructured communication (U-Comm) or Structured communication (S-Comm) setup as shown below.

Agent Run
U-Comm wget -O model_checkpoints/ckpt.1.pth "http://aspis.cmpt.sfu.ca/projects/comon/model_checkpoints/un_struc/ckpt.1.pth"
S-Comm wget -O model_checkpoints/ckpt.1.pth "http://aspis.cmpt.sfu.ca/projects/comon/model_checkpoints/struc/ckpt.1.pth"

Evaluation

To evaluate a pretrained S-Comm agent, run this from the root folder (CoMON/):

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/comon.yaml --comm-type struc --run-type eval

For U-Comm setup, replace struc with un-struc.

Average evaluation metrics are printed on the console when evaluation ends. Detailed metrics are placed in tb/eval/metrics directory.

Training

For training an S-Comm agent, run this from the root directory:

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/comon.yaml --comm-type struc --run-type train

For U-Comm, replace struc with un-struc.

Citation

Shivansh Patel*, Saim Wani*, Unnat Jain*, Alexander Schwing, Svetlana Lazebnik, Manolis Savva, Angel X. Chang. Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents In ICCV 2021. PDF

Bibtex

@inproceedings{patel2021interpretation,
  Author = {Shivansh Patel and Saim Wani and Unnat Jain and Alexander Schwing and 
  Svetlana Lazebnik and  Manolis Savva and Angel X. Chang},
  Title = {Interpretation of Emergent Communication 
  in Heterogeneous Collaborative Embodied Agents},
  Booktitle = {ICCV},
  Year = {2021}
  }

Acknowledgements

This repository is built upon Habitat Lab.

Owner
Saim Wani
Saim Wani
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Namish Khanna 40 Oct 11, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022