[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Overview

Shape As Points (SAP)

Paper | Project Page | Short Video (6 min) | Long Video (12 min)

This repository contains the implementation of the paper:

Shape As Points: A Differentiable Poisson Solver
Songyou Peng, Chiyu "Max" Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys and Andreas Geiger
NeurIPS 2021 (Oral)

If you find our code or paper useful, please consider citing

@inproceedings{Peng2021SAP,
 author    = {Peng, Songyou and Jiang, Chiyu "Max" and Liao, Yiyi and Niemeyer, Michael and Pollefeys, Marc and Geiger, Andreas},
 title     = {Shape As Points: A Differentiable Poisson Solver},
 booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
 year      = {2021}}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called sap using

conda env create -f environment.yaml
conda activate sap

Now, you can install PyTorch3D 0.6.0 from the official instruction as follows

pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu102_pyt190/download.html

And install PyTorch Scatter:

conda install pytorch-scatter -c pyg

Demo - Quick Start

First, run the script to get the demo data:

bash scripts/download_demo_data.sh

Optimization-based 3D Surface Reconstruction

You can now quickly test our code on the data shown in the teaser. To this end, simply run:

python optim_hierarchy.py configs/optim_based/teaser.yaml

This script should create a folder out/demo_optim where the output meshes and the optimized oriented point clouds under different grid resolution are stored.

To visualize the optimization process on the fly, you can set o3d_show: Frue in configs/optim_based/teaser.yaml.

Learning-based 3D Surface Reconstruction

You can also test SAP on another application where we can reconstruct from unoriented point clouds with either large noises or outliers with a learned network.

For the point clouds with large noise as shown above, you can run:

python generate.py configs/learning_based/demo_large_noise.yaml

The results can been found at out/demo_shapenet_large_noise/generation/vis.

As for the point clouds with outliers, you can run:

python generate.py configs/learning_based/demo_outlier.yaml

You can find the reconstrution on out/demo_shapenet_outlier/generation/vis.

Dataset

We have different dataset for our optimization-based and learning-based settings.

Dataset for Optimization-based Reconstruction

Here we consider the following dataset:

Please cite the corresponding papers if you use the data.

You can download the processed dataset (~200 MB) by running:

bash scripts/download_optim_data.sh

Dataset for Learning-based Reconstruction

We train and evaluate on ShapeNet. You can download the processed dataset (~220 GB) by running:

bash scripts/download_shapenet.sh

After, you should have the dataset in data/shapenet_psr folder.

Alternatively, you can also preprocess the dataset yourself. To this end, you can:

Usage for Optimization-based 3D Reconstruction

For our optimization-based setting, you can consider running with a coarse-to-fine strategy:

python optim_hierarchy.py configs/optim_based/CONFIG.yaml

We start from a grid resolution of 32^3, and increase to 64^3, 128^3 and finally 256^3.

Alternatively, you can also run on a single resolution with:

python optim.py configs/optim_based/CONFIG.yaml

You might need to modify the CONFIG.yaml accordingly.

Usage for Learning-based 3D Reconstruction

Mesh Generation

To generate meshes using a trained model, use

python generate.py configs/learning_based/CONFIG.yaml

where you replace CONFIG.yaml with the correct config file.

Use a pre-trained model

The easiest way is to use a pre-trained model. You can do this by using one of the config files with postfix _pretrained.

For example, for 3D reconstruction from point clouds with outliers using our model with 7x offsets, you can simply run:

python generate.py configs/learning_based/outlier/ours_7x_pretrained.yaml

The script will automatically download the pretrained model and run the generation. You can find the outputs in the out/.../generation_pretrained folders.

Note config files are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

We provide the following pretrained models:

noise_small/ours.pt
noise_large/ours.pt
outlier/ours_1x.pt
outlier/ours_3x.pt
outlier/ours_5x.pt
outlier/ours_7x.pt
outlier/ours_3plane.pt

Evaluation

To evaluate a trained model, we provide the script eval_meshes.py. You can run it using:

python eval_meshes.py configs/learning_based/CONFIG.yaml

The script takes the meshes generated in the previous step and evaluates them using a standardized protocol. The output will be written to .pkl and .csv files in the corresponding generation folder that can be processed using pandas.

Training

Finally, to train a new network from scratch, simply run:

python train.py configs/learning_based/CONFIG.yaml

For available training options, please take a look at configs/default.yaml.

Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022