Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Overview

Gender-classification

Machine Learning

This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and Sklearn are used In this.

Data set credits: Kaggle.com

1. Importing Libraries

import pandas as pd
import sklearn
import numpy as np
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.ensemble import VotingClassifier,RandomForestClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt

2. Loading Data and exploring data

data = pd.read_csv("L:\Gender classification\gender_classification_v7.csv")
data.head(20)
#checking for null values
data.isnull().sum()
data.describe()

Visualizing physical characters & diffrences using Graphs and plots

#visualising forehead length data
sns.lineplot(data['forehead_width_cm'],data['forehead_height_cm'], hue=data["gender"])

Graph

#visualising nose length data
sns.lineplot(data['nose_long'],data['nose_wide'], hue=data["gender"])

Graph

3. Encoding data and splitting data

twogender = {'Female':0, 'Male':1}
data['gender'] = data['gender'].map(twogender)

X = data.drop('gender', axis=1)
y = data['gender']

#splitting data for testing and traing process
from sklearn.model_selection import train_test_split, GridSearchCV
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3)
print(X_train.shape)
print(X_val.shape)
print(y_train.shape)
print(y_val.shape)

Now we will test diffrent Sklearn Models to find best accuracy

4. Importing All required prerequisites

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, plot_confusion_matrix
from sklearn.ensemble import RandomForestClassifier

5. Decision tree-classifier

dt = DecisionTreeClassifier(random_state=0)

dt.fit(X_train, y_train)
dt_pred = dt.predict(X_val)
dt_acc = accuracy_score(y_val, dt_pred)
print('Accuracy of Decision Tree is: {:.2f}%'.format(dt_acc*100))

6. RandomforestClassifier

rf = RandomForestClassifier(random_state=0)

rf.fit(X_train, y_train)
rf_pred = rf.predict(X_val)
rf_acc = accuracy_score(y_val, rf_pred)
print('Accuracy of Random Forest is: {:.2f}%'.format(rf_acc*100))

7. Logistic regression

lr = LogisticRegression(random_state=0)

lr.fit(X_train, y_train)
lr_pred = lr.predict(X_val)
lr_acc = accuracy_score(y_val, lr_pred)
print('Accuracy of Logistic Regression is: {:.2f}%'.format(lr_acc*100))

8. K-nearest neighbour

knn = KNeighborsClassifier()
params = {'n_neighbors':[2,3,4,5,6,7,8,9]}

model = GridSearchCV(knn, params, cv=5)
model.fit(X_train, y_train)
model.best_params_

kn = KNeighborsClassifier(n_neighbors=8)

kn.fit(X_train, y_train)
kn_pred = kn.predict(X_val)
kn_acc = accuracy_score(y_val, kn_pred)
print('Accuracy of KNeighbors is: {:.2f}%'.format(kn_acc*100))

RESULTS

1. Accuracy of Decision Tree is: 96.87%

It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome. It is a graphical representation for getting all the possible solutions to a problem/decision based on given conditions.

2. Accuracy of Random Forest is: 97.53%

Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset.

3. Accuracy of Logistic Regression is: 97.27%

Logistic regression is one of the most popular Machine Learning algorithms, which comes under the Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set of independent variables

4. Accuracy of KNeighbors is: 97.20%

K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available categorie K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K- NN algorithm.

Deployment process(in-complete)

File index.html(interface for deployment of webapp)

HTML TEMPLATE

import pandas as pd
import sklearn
import numpy as np
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.ensemble import VotingClassifier,RandomForestClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import confusion_matrix

data = pd.read_csv("L:\Gender classification\gender_classification_v7.csv")

#encoding data
twogender = {'Female':0, 'Male':1}
data['gender'] = data['gender'].map(twogender)

X = data.drop('gender', axis=1)
y = data['gender']

#splitting data for testing and traing process
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score, plot_confusion_matrix


X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3)

from sklearn.ensemble import RandomForestClassifier
#randomforestClassifier 
rf = RandomForestClassifier(random_state=0)

rf.fit(X_train, y_train)
rf_pred = rf.predict(X_val)
rf_acc = accuracy_score(y_val, rf_pred)
print('Accuracy of Random Forest is: {:.2f}%'.format(rf_acc*100))

#pickeling model
import pickle
pickle.dump(rf,open("model.pkl","wb"))

model =pickle.load(open("model.pkl","rb"))

this creates a model.pkl file and stores model

Contribution(s)

Contributions are always welcome! You can contribute to this project in the following way:

  • Deployment of model
  • Accuracy improvement
  • Bug fixes

Author

  • Aryan Raj

ForTheBadge built-with-love by Aryan Raj

Owner
Aryan raj
Computer Science and Engineering , SRM Institute of Science and Technology, Kattankulathur, Chennai
Aryan raj
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022