Driller: augmenting AFL with symbolic execution!

Related tags

Deep Learningdriller
Overview

Driller

Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Driller selectively traces inputs generated by AFL when AFL stops reporting any paths as 'favorites'. Driller will take all untraced paths which exist in AFL's queue and look for basic block transitions AFL failed to find satisfying inputs for. Driller will then use angr to synthesize inputs for these basic block transitions and present it to AFL for syncing. From here, AFL can determine if any paths generated by Driller are interesting, it will then go ahead and mutate these as normal in an attempt to find more paths.

The "Stuck" heuristic

Driller's symbolic execution component is invoked when AFL is 'stuck'. In this implementation, AFL's progress is determined by its 'pending_favs' attribute which can found in the fuzzer_stats file. When this attribute reaches 0, Driller is invoked. Other heuristics could also be used, and it's infact likely that better heuristics exist.

Use in the Cyber Grand Challenge

This same implementation of Driller was used team Shellphish in DARPA's Cyber Grand Challenge (CGC) to aid in the discovery of exploitable bugs. To see how Driller's invokation was scheduled for the CGC you can look at the Mechanical Phish's scheduler component 'meister'.

Current State and Caveats

The code currently supports three modes of operation:

  • A script that facilitates AFL and driller on one machine (over many cores if needed): https://github.com/shellphish/fuzzer/blob/master/shellphuzz
  • A monitor process watches over the fuzzer_stats file to determine when Driller should be invoked. When Driller looks like it could be useful, the monitor process schedules 'jobs' to work over all the inputs AFL has discovered / deemed interesting.
  • Celery tasks are assigned over a fleet of machines, some number of these tasks are assigned to fuzzing, some are assigned to drilling. Fuzzer tasks monitors the stats file, and invokes driller tasks when Driller looks like it could be useful. Redis is used to sync testcases to the filesystem of the fuzzer.

Driller was built and developed for DECREE binaries. While some support for other formats should work out-of-the-box, expect TracerMisfollowErrors to occur when unsupported or incorrectly implemented simprocedures are hit.

Example

Here is an example of using driller to find new testcases based off the trace of a single testcase.

import driller

d = driller.Driller("./CADET_00001",  # path to the target binary
                    "racecar", # initial testcase
                    "\xff" * 65535, # AFL bitmap with no discovered transitions
                   )

new_inputs = d.drill()

Dependencies

  • Mechaphish Fuzzer component
  • Mechaphish Tracer component
Owner
Shellphish
Shellphish
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022