A PyTorch implementation of DenseNet.

Overview

A PyTorch Implementation of DenseNet

This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Convolutional Networks by G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. This implementation gets a CIFAR-10+ error rate of 4.77 with a 100-layer DenseNet-BC with a growth rate of 12. Their official implementation and links to many other third-party implementations are available in the liuzhuang13/DenseNet repo on GitHub.

Why DenseNet?

As this table from the DenseNet paper shows, it provides competitive state of the art results on CIFAR-10, CIFAR-100, and SVHN.

Why yet another DenseNet implementation?

PyTorch is a great new framework and it's nice to have these kinds of re-implementations around so that they can be integrated with other PyTorch projects.

How do you know this implementation is correct?

Interestingly while implementing this, I had a lot of trouble getting it to converge and looked at every part of the code closer than I usually would. I compared all of the model's hidden states and gradients with the official implementation to make sure my code was correct and even trained a VGG-style network on CIFAR-10 with the training code here. It turns out that I uncovered a new critical PyTorch bug (now fixed) that was causing this.

I have left around my original message about how this isn't working and the things that I have checked in this document. I think this should be interesting for other people to see my development and debugging strategies when having issues implementing a model that's known to converge. I also started this PyTorch forum thread, which has a few other discussion points. You may also be interested in my script that compares PyTorch gradients to Torch gradients and my script that numerically checks PyTorch gradients.

My convergence issues were due to a critical PyTorch bug related to using torch.cat with convolutions with cuDNN enabled (which it is by default when CUDA is used). This bug caused incorrect gradients and the fix to this bug is to disable cuDNN (which doesn't have to be done anymore because it's fixed). The oversight in my debugging strategies that caused me to not find this error is that I did not think to disable cuDNN. Until now, I have assumed that the cuDNN option in frameworks are bug-free, but have learned that this is not always the case. I may have also found something if I would have numerically debugged torch.cat layers with convolutions instead of fully connected layers.

Adam fixed the PyTorch bug that caused this in this PR and has been merged into Torch's master branch. If you are interested in using the DenseNet code in this repository, make sure your PyTorch version contains this PR and was downloaded after 2017-02-10.

What does the PyTorch compute graph of the model look like?

You can see the compute graph here, which I created with make_graph.py, which I copied from Adam Paszke's gist. Adam says PyTorch will soon have a better way to create compute graphs.

How does this implementation perform?

By default, this repo trains a 100-layer DenseNet-BC with an growth rate of 12 on the CIFAR-10 dataset with data augmentations. Due to GPU memory sizes, this is the largest model I am able to run. The paper reports a final test error of 4.51 with this architecture and we obtain a final test error of 4.77.

Why don't people use ADAM instead of SGD for training ResNet-style models?

I also tried training a net with ADAM and found that it didn't converge as well with the default hyper-parameters compared to SGD with a reasonable learning rate schedule.

What about the non-BC version?

I haven't tested this as thoroughly, you should make sure it's working as expected if you plan to use and modify it. Let me know if you find anything wrong with it.

A paradigm for ML code

I like to include a few features in my projects that I don't see in some other re-implementations that are present in this repo. The training code in train.py uses argparse so the batch size and some other hyper-params can easily be changed and as the model is training, progress is written out to csv files in a work directory also defined by the arguments. Then a separate script plot.py plots the progress written out by the training script. The training script calls plot.py after every epoch, but it can importantly be run on its own so figures can be tweaked without re-running the entire experiment.

Help wanted: Improving memory utilization and multi-GPU support

I think there are ways to improve the memory utilization in this code as in the the official space-efficient Torch implementation. I also would be interested in multi-GPU support.

Running the code and viewing convergence

First install PyTorch (ideally in an anaconda3 distribution). ./train.py will create a model, start training it, and save progress to args.save, which is work/cifar10.base by default. The training script will call plot.py after every epoch to create plots from the saved progress.

Citations

The following is a BibTeX entry for the DenseNet paper that you should cite if you use this model.

@article{Huang2016Densely,
  author = {Huang, Gao and Liu, Zhuang and Weinberger, Kilian Q.},
  title = {Densely Connected Convolutional Networks},
  journal = {arXiv preprint arXiv:1608.06993},
  year = {2016}
}

If you use this implementation, please also consider citing this implementation and code repository with the following BibTeX or plaintext entry. The BibTeX entry requires the url LaTeX package.

@misc{amos2017densenet,
  title = {{A PyTorch Implementation of DenseNet}},
  author = {Amos, Brandon and Kolter, J. Zico},
  howpublished = {\url{https://github.com/bamos/densenet.pytorch}},
  note = {Accessed: [Insert date here]}
}

Brandon Amos, J. Zico Kolter
A PyTorch Implementation of DenseNet
https://github.com/bamos/densenet.pytorch.
Accessed: [Insert date here]

Licensing

This repository is Apache-licensed.

Owner
Brandon Amos
Brandon Amos
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022