code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Overview

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

News

(03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr


This is the official PyTorch implementation of TCL

image

Requirements:

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
pip install transformers==4.8.1
pip install timm==0.4.9
conda install ruamel_yaml
pip install opencv-python
pip install --upgrade Pillow
pip install einops

Pre-training Datasets:

Downstream-task Datasets:

Json Files from Pre-training and Downstream Tasks:

  • refer to Download in ALBEF
  • you need to change the image path in json files according to your downloaded images

Pre-trained checkpoint:

Pre-training:

python -m torch.distributed.launch --nproc_per_node=8 \
--use_env Pretrain.py \
--config ./configs/Pretrain.yaml \
--output_dir output/pretrain

Downstream Tasks:

Image-Text Retrieval

# zero-shot coco 
python -m torch.distributed.launch --nproc_per_node=8 \
--use_env Retrieval.py \
--config ./configs/Retrieval_coco.yaml \
--output_dir output/pretrain_e30_Retrieval_coco_zeroshot \
--checkpoint output/pretrain/checkpoint_29.pth \
--evaluate

# fine-tune flickr
python -m torch.distributed.launch --nproc_per_node=8 \
--use_env Retrieval.py \
--config ./configs/Retrieval_flickr.yaml \
--output_dir output/pretrain_e30_Retrieval_flickr \
--checkpoint output/pretrain/checkpoint_29.pth

# fine-tune coco
python -m torch.distributed.launch --nproc_per_node=8 \
--use_env Retrieval.py \
--config ./configs/Retrieval_coco.yaml \
--output_dir output/pretrain_e30_Retrieval_coco \
--checkpoint output/pretrain/checkpoint_29.pth

# zero-shot flickr 
python -m torch.distributed.launch --nproc_per_node=8 \
--use_env Retrieval.py \
--config ./configs/Retrieval_flickr.yaml \
--output_dir output/pretrain_e30_Retrieval_flickr_zeroshot \
--checkpoint output/pretrain_e30_Retrieval_coco/checkpoint_best.pth \
--evaluate

VQA

python -m torch.distributed.launch --nproc_per_node=8 \
--use_env VQA.py \
--config ./configs/VQA.yaml \
--output_dir output/pretrain_e30_vqa \
--checkpoint output/pretrain/checkpoint_29.pth

Visual Entailment

python -m torch.distributed.launch --nproc_per_node=8 \
--use_env VE.py \
--config ./configs/VE.yaml \
--output_dir output/pretrain_e30_VE \
--checkpoint output/pretrain/checkpoint_29.pth

NLVR2

# pre-train nlvr
python -m torch.distributed.launch --nproc_per_node=8 \
--use_env Pretrain_nlvr.py \
--config ./configs/NLVR_pretrain.yaml \
--output_dir output/pretrain_e30_NLVR_pretrain \
--checkpoint output/pretrain/checkpoint_29.pth

# fine-tune nlvr
python -m torch.distributed.launch --nproc_per_node=8 \
--use_env NLVR.py \
--config ./configs/NLVR.yaml \
--output_dir output/pretrain_e30_NLVR \
--checkpoint output/pretrain_e30_NLVR_pretrain/checkpoint_00.pth

Citation:

@article{yang2022vision,
  title={Vision-Language Pre-Training with Triple Contrastive Learning},
  author={Yang, Jinyu and Duan, Jiali and Tran, Son and Xu, Yi and Chanda, Sampath and Chen, Liqun and Zeng, Belinda and Chilimbi, Trishul and Huang, Junzhou},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2022}
}

Our code is largely borrowed from ALBEF

GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022