Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

Overview

TEMOS: TExt to MOtionS

Generating diverse human motions from textual descriptions

Description

Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions".

Please visit our webpage for more details.

teaser_lightteaser_dark

Bibtex

If you find this code useful in your research, please cite:

@article{petrovich22temos,
  title     = {{TEMOS}: Generating diverse human motions from textual descriptions},
  author    = {Petrovich, Mathis and Black, Michael J. and Varol, G{\"u}l},
  journal   = {arXiv},
  month     = {April},
  year      = {2022}
}

You can also put a star , if the code is useful to you.

Installation 👷

1. Create conda environment

conda create python=3.9 --name temos
conda activate temos

Install PyTorch 1.10 inside the conda environnement, and install the following packages:

pip install pytorch_lightning --upgrade
pip install torchmetrics==0.7
pip install hydra-core --upgrade
pip install hydra_colorlog --upgrade
pip install shortuuid
pip install tqdm
pip install pandas
pip install transformers
pip install psutil
pip install einops

The code was tested on Python 3.9.7 and PyTorch 1.10.0.

2. Download the datasets

KIT Motion-Language dataset

Be sure to read and follow their license agreements, and cite accordingly.

Use the code from Ghosh et al. or JL2P to download and prepare the kit dataset (extraction of xyz joints coodinates data from axis-angle Master Motor Map). Move or copy all the files which ends with "_meta.json", "_annotations.json" and "_fke.csv" inside the datasets/kit folder. "

AMASS dataset

WIP: instructions to be released soon

3. Download text model dependencies

Download distilbert from Hugging Face

cd deps/
git lfs install
git clone https://huggingface.co/distilbert-base-uncased
cd ..

4. SMPL body model

WIP: instructions to be released soon

5. (Optional) Donwload pre-trained models

WIP: instructions to be released soon

How to train TEMOS 🚀

The command to launch a training experiment is the folowing:

python train.py [OPTIONS]

The parsing is done by using the powerful Hydra library. You can override anything in the configuration by passing arguments like foo=value or foo.bar=value.

Experiment path

Each training will create a unique output directory (referred to as FOLDER below), where logs, configuations and checkpoints are stored.

By default it is defined as outputs/${data.dataname}/${experiment}/${run_id} with data.dataname the name of the dataset (see examples below), experiment=baseline and run_id a 8 unique random alpha-numeric identifier for the run (everything can be overridden if needed).

This folder is printed during logging, it should look like outputs/kit-mmm-xyz/baseline/3gn7h7v6/.

Some optional parameters

Datasets

  • data=kit-mmm-xyz: KIT-ML motions processed by the MMM framework (as in the original data) loaded as xyz joint coordinates (after axis-angle transformation → xyz) (by default)
  • data=kit-amass-rot: KIT-ML motions loaded as SMPL rotations and translations, from AMASS (processed with MoSh++)
  • data=kit-amass-xyz: KIT-ML motions loaded as xyz joint coordinates, from AMASS (processed with MoSh++) after passing through a SMPL layer and regressing the correct joints.

Training

  • trainer=gpu: training with CUDA, on an automatically selected GPU (default)
  • trainer=cpu: training on the CPU

How to generate motions with TEMOS

Dataset splits

To get results comparable to previous work, we use the same splits as in Language2Pose and Ghosh et al.. To be explicit, and not rely on random seeds, you can find the list of id-files in datasets/kit-splits/ (train/val/test).

When sampling Ghosh et al.'s motions with their code, I noticed that their dataloader is missing some sequences (see the discussion here). In order to compare all the methods with the same test set, we use the 520 sequences produced by Ghosh et al. code for the test set (instead of the 587 sequences). This split is refered as gtest (for "Ghosh test"). It is used per default in the sampling/evaluation/rendering code. You can change this set by specifying split=SPLIT in each command line.

You can also find in datasets/kit-splits/, the split used for the human-study (human-study) and the split used for the visuals of the paper (visu).

Sampling/generating motions

The command line to sample one motion per sequence is the following:

python sample.py folder=FOLDER [OPTIONS]

This command will create the folder FOLDER/samples/SPLIT and save the motions in the npy format.

Some optional parameters

  • mean=false: Take the mean value for the latent vector, instead of sampling (default is false)
  • number_of_samples=X: Generate X motions (by default it generates only one)
  • fact=X: Multiplies sigma by X during sampling (1.0 by default, diversity can be increased when fact>1)

Model trained on SMPL rotations

If your model has been trained with data=kit-amass-rot, it produces SMPL rotations and translations. In this case, you can specify the type of data you want to save after passing through the SMPL layer.

  • jointstype=mmm: Generate xyz joints compatible with the MMM bodies (by default). This gives skeletons comparable to data=kit-mmm-xyz (needed for evaluation).
  • jointstype=vertices: Generate human body meshes (needed for rendering).

Evaluating TEMOS (and prior works)

To evaluate TEMOS on the metrics defined in the paper, you must generate motions first (see above), and then run:

python evaluate.py folder=FOLDER [OPTIONS]

This will compute and store the metrics in the file FOLDER/samples/metrics_SPLIT in a yaml format.

Some optional parameters

Same parameters as in sample.py, it will choose the right directories for you. In the case of evaluating with number_of_samples>1, the script will compute two metrics metrics_gtest_multi_avg (the average of single metrics) and metrics_gtest_multi_best (chosing the best output for each motion). Please check the paper for more details.

Model trained on SMPL rotations

Currently, evaluation is only implemented on skeletons with MMM format. You must therefore use jointstype=mmm during sampling.

Evaluating prior works

WIP: the proper instructions and code will be available soon.

To give an overview:

  1. Generate motions with their code (it is still in the rifke feature space)
  2. Save them in xyz format (I "hack" their render script, to save them in xyz npy format instead of rendering)
  3. Load them into the evaluation code (instead of loading TEMOS motions).

Rendering motions

To get the visuals of the paper, I use Blender 2.93. The setup is not trivial (installation + running), I do my best to explain the process but don't hesitate to tell me if you have a problem.

Instalation

The goal is to be able to install blender so that it can be used with python scripts (so we can use ``import bpy''). There seem to be many different ways to do this, I will explain the one I use and understand (feel free to use other methods or suggest an easier way). The installation of Blender will be done as a standalone package. To use my scripts, we will run blender in the background, and the python executable in blender will run the script.

In any case, after the installation, please do step 5. to install the dependencies in the python environment.

  1. Please follow the instructions to install blender 2.93 on your operating system. Please install exactly this version.
  2. Locate the blender executable if it is not in your path. For the following commands, please replace blender with the path to your executable (or create a symbolic link or use an alias).
    • On Linux, it could be in /usr/bin/blender (already in your path).
    • On macOS, it could be in /Applications/Blender.app/Contents/MacOS/Blender (not in your path)
  3. Check that the correct version is installed:
    • blender --background --version should return "Blender 2.93.X".
    • blender --background --python-expr "import sys; print('\nThe version of python is '+sys.version.split(' ')[0])" should return "3.9.X".
  4. Locate the python installation used by blender the following line. I will refer to this path as path/to/blender/python.
blender --background --python-expr "import sys; import os; print('\nThe path to the installation of python of blender can be:'); print('\n'.join(['- '+x for x in sys.path if 'python' in (file:=os.path.split(x)[-1]) and not file.endswith('.zip')]))"
  1. Install these packages in the python environnement of blender:
path/to/blender/python -m pip install --user numpy
path/to/blender/python -m pip install --user matplotlib
path/to/blender/python -m pip install --user hydra-core --upgrade
path/to/blender/python -m pip install --user hydra_colorlog --upgrade
path/to/blender/python -m pip install --user moviepy
path/to/blender/python -m pip install --user shortuuid

Launch a python script (with arguments) with blender

Now that blender is installed, if we want to run the script script.py with the blender API (the bpy module), we can use:

blender --background --python script.py

If you need to add additional arguments, this will probably fail (as blender will interpret the arguments). Please use the double dash -- to tell blender to ignore the rest of the command. I then only parse the last part of the command (check temos/launch/blender.py if you are interested).

Rendering one sample

To render only one motion, please use this command line:

blender --background --python render.py -- npy=PATH_TO_DATA.npy [OPTIONS]

Rendering all the data

Please use this command line to render all the data of a split (which have to be already generated with sample.py). I suggest to use split=visu to render only a small subset.

blender --background --python render.py -- folder=FOLDER [OPTIONS]

SMPL bodies

Don't forget to generate the data with the option jointstype=vertices before. The renderer will automatically detect whether the movement is a sequence of joints or meshes.

Some optional parameters

  • downsample=true: Render only 1 frame every 8 frames, to speed up rendering (by default)
  • canonicalize=true: Make sure the first pose is oriented canonically (by translating and rotating the entire sequence) (by default)
  • mode=XXX: Choose the rendering mode (default is mode=sequence)
    • video: Render all the frames and generate a video (as in the supplementary video)
    • sequence: Render a single frame, with num=8 bodies (sampled equally, as in the figures of the paper)
    • frame: Render a single frame, at a specific point in time (exact_frame=0.5, generates the frame at about 50% of the video)
  • quality=false: Render to a higher resolution and denoise the output (default to false to speed up))

License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including SMPL, SMPL-X, PyTorch3D, Hugging Face, Hydra, and uses datasets which each have their own respective licenses that must also be followed.

Owner
Mathis Petrovich
PhD student mainly interested in Human Body Shape Analysis, Computer Vision and Optimal Transport.
Mathis Petrovich
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022