World Models with TensorFlow 2

Overview

World Models

This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2.

Docker

The easiest way to handle dependencies is with Nvidia-Docker. Follow the instructions below to generate and attach to the container.

docker image build -t wm:1.0 -f docker/Dockerfile.wm .
docker container run -p 8888:8888 --gpus '"device=0"' --detach -it --name wm wm:1.0
docker attach wm

Visualizations

To visualize the environment from the agents perspective or generate synthetic observations use the visualizations jupyter notebook. It can be launched from your container with the following:

jupyter notebook --no-browser --port=8888 --ip=0.0.0.0 --allow-root
Real Frame Sample Reconstructed Real Frame Imagined Frame
alt-text-1 alt-text-2 alt-text-3
Ground Truth (CarRacing) Reconstructed
drawing drawing
Ground Truth Environment (DoomTakeCover) Dream Environment
drawing drawing

Reproducing Results From Scratch

These instructions assume a machine with a 64 core cpu and a gpu. If running in the cloud it will likely financially make more sense to run the extraction and controller processes on a cpu machine and the VAE, preprocessing, and RNN tasks on a GPU machine.

DoomTakeCover-v0

CAUTION The doom environment leaves some processes hanging around. In addition to running the doom experiments, the script kills processes including 'vizdoom' in the name (be careful with this if you are not running in a container). To reproduce results for DoomTakeCover-v0 run the following bash script.

bash launch_scripts/wm_doom.bash

CarRacing-v0

To reproduce results for CarRacing-v0 run the following bash script

bash launch_scripts/carracing.bash

Disclaimer

I have not run this for long enough(~45 days wall clock time) to verify that we produce the same results on CarRacing-v0 as the original implementation.

Average return curves comparing the original implementation and ours. The shaded area represents a standard deviation above and below the mean.

alt text

For simplicity, the Doom experiment implementation is slightly different than the original

  • We do not use weighted cross entropy loss for done predictions
  • We train the RNN with sequences that always begin at the start of an episode (as opposed to random subsequences)
  • We sample whether the agent dies (as opposed to a deterministic cut-off)
\tau Returns Dream Environment        Returns Actual Environment       
D. Ha Original 1.0 1145 +/- 690 868 +/- 511
Eager 1.0 1465 +/- 633 849 +/- 499
Owner
Zac Wellmer
Zac Wellmer
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023