Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Overview

Deep-rPPG: Camera-based pulse estimation using deep learning tools

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools Source code of the master thesis titled "Camera-based pulse estimation using deep learning tools"

Implemented networks

DeepPhys

Chen, Weixuan, and Daniel McDuff. "Deepphys: Video-based physiological measurement using convolutional attention networks." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

PhysNet

Yu, Zitong, Xiaobai Li, and Guoying Zhao. "Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks." Proc. BMVC. 2019.

NVIDIA Jetson Nano inference

The running speed of the networks are tested on NVIDIA Jetson Nano. Results and the installation steps of PyTorch and OpenCV are in the nano folder.

Abstract of the corresponding master thesis

titled "Camera-based pulse estimation using deep learning tools" (also uploaded in this repository)

Lately, it has been shown that an average color camera can detect the subtle color variations of the skin (caused by the cardiac cycle) – enabling us to monitor the pulse remotely in a non-contact manner with a camera. Since then, the field of remote photoplethysmography (rPPG) has been formed and advanced quickly in order the overcome its main limitations, namely: motion robustness and low signal quality. Most recently, deep learning (DL) methods have also appeared in the field – but applied only to adults so far. In this work, we utilize DL approaches for long-term, continuous premature infant monitoring in the Neonatal Intensive Care Unit (NICU).

The technology used in NICU for monitoring vital signs of infants has hardly changed in the past 30 years (i.e., ECG and pulse-oximetry). Even though these technologies have been of great importance for the reliable measurement of essential vital signs (like heart-rate, respiration-rate, and blood oxygenation), they also have considerable disadvantages – originating from their contact nature. The skin of premature infants is fragile, and contact sensors may cause discomfort, stress, pain, and even injuries – thus can harm the early development of the neonate. For the well-being of not exclusively newborns, but also every patient or subject who requires long-term monitoring (e.g., elders) or for whom contact sensors are not applicable (e.g., burn patients), it would be beneficial to replace contact-based technologies with non-contact alternatives without significantly sacrificing accuracy. Therefore, the topic of this study is camera-based (remote) pulse monitoring -- utilizing DL methods -- in the specific use-case of infant monitoring in the NICU.

First of all, as there is no publicly available infant database for rPPG purposes currently to our knowledge, it had to be collected for Deep Neural Network (DNN) training and evaluation. Video data from infants were collected in the $I$st Dept. of Neonatology of Pediatrics, Dept. of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary and a database was created for DNN training and evaluation with a total length of around 1 day.

Two state-of-the-art DNNs were implemented (and trained on our data) which were developed specifically for the task of pulse extraction from video, namely DeepPhys and PhysNet. Besides, two classical algorithms were implemented, namely POS and FVP, to be able to compare the two approaches: in our dataset DL methods outperform classical ones. A novel data augmentation technique is introduced for rPPG DNN training, namely frequency augmentation, which is essentially a temporal resampling of a video and corresponding label segment (while keeping the original camera sampling rate parameter unchanged) resulting in a modified pulse-rate. This method significantly improved the generalization capability of the DNNs.

In case of some external condition, the efficacy of remote sensing the vital signs are degraded (e.g., inadequate illumination, heavy subject motion, limited visible skin surface, etc.). In these situations, the prediction of the methods might be inaccurate or might give a completely wrong estimate blindly without warning -- which is undesirable, especially in medical applications. To solve this problem, the technique of Stochastic Neural Networks (SNNs) is proposed which yields a probability distribution over the whole output space instead of a single point estimate. In other words, SNNs associate a certainty/confidence/quality measure to their prediction, therefore we know how reliable an estimate is. In the spirit of this, a probabilistic neural network was designed for pulse-rate estimation, called RateProbEst, fused and trained together with PhysNet. This method has not been applied in this field before to our knowledge. Each method was evaluated and compared with each other on a large benchmark dataset.

Finally, the feasibility of rPPG DNN applications in a resource-limited environment is inspected on an NVIDIA Jetson Nano embedded system. The results demonstrate that the implemented DNNs are capable of (quasi) real-time inference even on limited hardware.

Cite as

Dániel Terbe. (2021, January 25). Camera-Based Pulse Monitoring Using Deep Learning Tools.

Special application on neonates

A custom YOLO network is used to crop the baby as a preprocessing step. This network was created based on this repo: https://github.com/eriklindernoren/PyTorch-YOLOv3

Our modified version: https://github.com/terbed/PyTorch-YOLOv3

Owner
Terbe Dániel
Terbe Dániel
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022