Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Overview

Dataset Distillation by Matching Training Trajectories

Project Page | Paper


Teaser image

This repo contains code for training expert trajectories and distilling synthetic data from our Dataset Distillation by Matching Training Trajectories paper (CVPR 2022). Please see our project page for more results.

Dataset Distillation by Matching Training Trajectories
George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, Jun-Yan Zhu
CMU, MIT, UC Berkeley
CVPR 2022

The task of "Dataset Distillation" is to learn a small number of synthetic images such that a model trained on this set alone will have similar test performance as a model trained on the full real dataset.

Our method distills the synthetic dataset by directly optimizing the fake images to induce similar network training dynamics as the full, real dataset. We train "student" networks for many iterations on the synthetic data, measure the error in parameter space between the "student" and "expert" networks trained on real data, and back-propagate through all the student network updates to optimize the synthetic pixels.

Wearable ImageNet: Synthesizing Tileable Textures

Teaser image

Instead of treating our synthetic data as individual images, we can instead encourage every random crop (with circular padding) on a larger canvas of pixels to induce a good training trajectory. This results in class-based textures that are continuous around their edges.

Given these tileable textures, we can apply them to areas that require such properties, such as clothing patterns.

Visualizations made using FAB3D

Getting Started

First, download our repo:

git clone https://github.com/GeorgeCazenavette/mtt-distillation.git
cd mtt-distillation

For an express instillation, we include .yaml files.

If you have an RTX 30XX GPU (or newer), run

conda env create -f requirements_11_3.yaml

If you have an RTX 20XX GPU (or older), run

conda env create -f requirements_10_2.yaml

You can then activate your conda environment with

conda activate distillation
Quadro Users Take Note:

torch.nn.DataParallel seems to not work on Quadro A5000 GPUs, and this may extend to other Quadro cards.

If you experience indefinite hanging during training, try running the process with only 1 GPU by prepending CUDA_VISIBLE_DEVICES=0 to the command.

Generating Expert Trajectories

Before doing any distillation, you'll need to generate some expert trajectories using buffer.py

The following command will train 100 ConvNet models on CIFAR-100 with ZCA whitening for 50 epochs each:

python buffer.py --dataset=CIFAR100 --model=ConvNet --train_epochs=50 --num_experts=100 --zca --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

We used 50 epochs with the default learning rate for all of our experts. Worse (but still interesting) results can be obtained faster through training fewer experts by changing --num_experts. Note that experts need only be trained once and can be re-used for multiple distillation experiments.

Distillation by Matching Training Trajectories

The following command will then use the buffers we just generated to distill CIFAR-100 down to just 1 image per class:

python distill.py --dataset=CIFAR100 --ipc=1 --syn_steps=20 --expert_epochs=3 --max_start_epoch=20 --zca --lr_img=1000 --lr_lr=1e-05 --lr_teacher=0.01 --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

ImageNet

Our method can also distill subsets of ImageNet into low-support synthetic sets.

When generating expert trajectories with buffer.py or distilling the dataset with distill.py, you must designate a named subset of ImageNet with the --subset flag.

For example,

python distill.py --dataset=ImageNet --subset=imagefruit --model=ConvNetD5 --ipc=1 --res=128 --syn_steps=20 --expert_epochs=2 --max_start_epoch=10 --lr_img=1000 --lr_lr=1e-06 --lr_teacher=0.01 --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

will distill the imagefruit subset (at 128x128 resolution) into the following 10 images

To register your own ImageNet subset, you can add it to the Config class at the top of utils.py.

Simply create a list with the desired class ID's and add it to the dictionary.

This gist contains a list of all 1k ImageNet classes and their corresponding numbers.

Texture Distillation

You can also use the same set of expert trajectories (except those using ZCA) to distill classes into toroidal textures by simply adding the --texture flag.

For example,

python distill.py --texture --dataset=ImageNet --subset=imagesquawk --model=ConvNetD5 --ipc=1 --res=256 --syn_steps=20 --expert_epochs=2 --max_start_epoch=10 --lr_img=1000 --lr_lr=1e-06 --lr_teacher=0.01 --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

will distill the imagesquawk subset (at 256x256 resolution) into the following 10 textures

Acknowledgments

We would like to thank Alexander Li, Assaf Shocher, Gokul Swamy, Kangle Deng, Ruihan Gao, Nupur Kumari, Muyang Li, Gaurav Parmar, Chonghyuk Song, Sheng-Yu Wang, and Bingliang Zhang as well as Simon Lucey's Vision Group at the University of Adelaide for their valuable feedback. This work is supported, in part, by the NSF Graduate Research Fellowship under Grant No. DGE1745016 and grants from J.P. Morgan Chase, IBM, and SAP. Our code is adapted from https://github.com/VICO-UoE/DatasetCondensation

Related Work

  1. Tongzhou Wang et al. "Dataset Distillation", in arXiv preprint 2018
  2. Bo Zhao et al. "Dataset Condensation with Gradient Matching", in ICLR 2020
  3. Bo Zhao and Hakan Bilen. "Dataset Condensation with Differentiable Siamese Augmentation", in ICML 2021
  4. Timothy Nguyen et al. "Dataset Meta-Learning from Kernel Ridge-Regression", in ICLR 2021
  5. Timothy Nguyen et al. "Dataset Distillation with Infinitely Wide Convolutional Networks", in NeurIPS 2021
  6. Bo Zhao and Hakan Bilen. "Dataset Condensation with Distribution Matching", in arXiv preprint 2021
  7. Kai Wang et al. "CAFE: Learning to Condense Dataset by Aligning Features", in CVPR 2022

Reference

If you find our code useful for your research, please cite our paper.

@inproceedings{
cazenavette2022distillation,
title={Dataset Distillation by Matching Training Trajectories},
author={George Cazenavette and Tongzhou Wang and Antonio Torralba and Alexei A. Efros and Jun-Yan Zhu},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2022}
}
Owner
George Cazenavette
Carnegie Mellon University
George Cazenavette
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022