Alignment Attention Fusion framework for Few-Shot Object Detection

Overview

AAF framework

Framework generalities

This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is to propose a flexible framework to implement various attention mechanisms for Few-Shot Object Detection. The framework is composed of 3 different modules: Spatial Alignment, Global Attention and Fusion Layer, which are applied successively to combine features from query and support images.

The inputs of the framework are:

  • query_features List[Tensor(B, C, H, W)]: Query features at different levels. For each level, the features are of shape Batch x Channels x Height x Width.
  • support_features List[Tensor(N, C, H', W')] : Support features at different level. First dimension correspond to the number of support images, regrouped by class: N = N_WAY * K_SHOT.
  • support_targets List[BoxList] bounding boxes for object in each support image.

The framework can be configured using a separate config file. Examples of such files are available under /config_files/aaf_framework/. The structure of these files is simple:

ALIGN_FIRST: #True/False Run Alignment before Attention when True
OUT_CH: # Number of features output by the fusion layer
ALIGNMENT:
    MODE: # Name of the alignment module selected
ATTENTION:
    MODE: # Name of the attention module selected
FUSION:
    MODE: # Name of the fusion module selected
File name Method Alignment Attention Fusion
identity.yaml Identity IDENTITY IDENTITY IDENTITY
feature_reweighting.yaml FSOD via feature reweighting IDENTITY REWEIGHTING_BATCH IDENTITY
meta_faster_rcnn.yaml Meta Faster-RCNN SIMILARITY_ALIGN META_FASTER META_FASTER
self_adapt.yaml Self-adaptive attention for FSOD IDENTITY_NO_REPEAT GRU IDENTITY
dynamic.yaml Dynamic relevance learning IDENTITY INTERPOLATE DYNAMIC_R
dana.yaml Dual Awarness Attention for FSOD CISA BGA HADAMARD

The path to the AAF config file should be specified inside the master config file (i.e. for the whole network) under FEWSHOT.AAF.CFG.

For each module, classes implementing the available choices are regrouped under a single file: /modelling/aaf/alignment.py, /modelling/aaf/attention.py and /modelling/aaf/fusion.py.

Spatial Alignment

Spatial Alignment reorganizes spatially the features of one feature map to match another one. The idea is to align similar features in both maps so that comparison is easier.

Name Description
IDENTITY Repeats the feature to match BNCHW and NBCHW dimensions
IDENTITY_NO_REPEAT Identity without repetition
SIMILARITY_ALIGN Compute similarity matrix between support and query and align support to query accordingly.
CISA CISA block from this method

### Global Attention Global Attention highlights some features of a map accordingly to an attention vector computed globally on another one. The idea is to leverage global and hopefully semantic information.

Name Description
IDENTITY Simply pass features to next modules.
REWEIGHTING Reweights query features using globally pooled vectors from support.
REWEIGHTING_BATCH Same as above but support examples are the same for the whole batch.
SELF_ATTENTION Same as above but attention vectors are computed from the alignment matrix between query and support.
BGA BGA blocks from this method
META_FASTER Attention block from this method
POOLING Pools query and support features to the same size.
INTERPOLATE Upsamples support features to match query size.
GRU Computes attention vectors through a graph representation using a GRU.

Fusion Layer

Combine directly the features from support and query. These maps must be of the same dimension for point-wise operation. Hence fusion is often employed along with alignment.

Name Description
IDENTITY Returns onlu adapted query features.
ADD Point-wise sum between query and support features.
HADAMARD Point-wise multiplication between query and support features.
SUBSTRACT Point-wise substraction between query and support features.
CONCAT Channel concatenation of query and support features.
META_FASTER Fusion layer from this method
DYNAMIC_R Fusion layer from this method

Training and evaluation

Training and evaluation scripts are available.

TODO: Give code snippet to run training with a specified config file (modify main) Basically create 2 scripts train.py and eval.py with arg config file.

DataHandler

Explain DataHandler class a bit.

Installation

Dependencies used for this projects can be installed through conda create --name <env> --file requirements.txt. Please note that these requirements are not all necessary and it will be updated soon.

FCOS must be installed from sources. But there might be some issue after installation depending on the version of the python packages you use.

  • cpu/vision.h file not found: replace all occurences in the FCOS source by vision.h (see this issue).
  • Error related to AT_CHECK with pytorch > 1.5 : replace all occurences by TORCH_CHECK (see this issue.
  • Error related to torch._six.PY36: replace all occurence of PY36 by PY37.

Results

Results on pascal VOC, COCO and DOTA.

Owner
Pierre Le Jeune
PhD Student in Few-shot object detection.
Pierre Le Jeune
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022