Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Overview

Tutoriais Públicos

GitHub last commit

Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Os tutoriais são publicados principalmente no Instagram e Linkedin da Trading com Dados. Este repositório serve, portanto, como um repositório de conteúdo para quem deseja de forma simples e direta encontrar os códigos produzidos para estes tutoriais.

Faremos o possível para manter esse repositório atualizado e contendo todos os tutoriais de conteúdo que desenvolvemos para nossas redes sociais. No entanto, não podemos garantir que a totalidade do conteúdo estará disponível aqui.

A maior parte dos códigos tem como nome aqui no GitHub o mesmo título do conteúdo no Instagram. Se o nome não for o mesmo, haverá pelo menos similaridade no que está descrito aqui com o título no Instagram.

A forma mais fácil de encontrar os códigos é através do ID presente depois do nome do código, que na verdade é apenas a data quando o código foi postado na seguinte sequência: ano, mês e dia, tudo junto. Exemplo: código criado no dia 03 de janeiro de 2022 possui como ID 20220103.

Atenção: Os códigos desenvolvidos para o canal do YouTube estão em um outro repositório. Para visitá-lo, clique aqui.

REPOSITÓRIO EM CONSTRUÇÃO

2021

  1. Como obter dados de ações em 5 simples passos (2021)
  2. Comece a programar em Python em 1 minuto (2021)
  3. Seu primeiro gráfico de candle no Python em 1 minuto (2021)
  4. Matriz de correlação entre ativos no Python em 5 minutos (2021)
  5. Visualize vários ativos no mesmo gráfico no Python em 5 minutos (2021)
  6. Compare a sua carteira com o IBOV em 5 minutos (20210824)
  7. Obtendo dados de dividendos (20210904)
  8. Matriz de risco vs. retorno no Python (20210919)
  9. Como obter dados de ações no Python (ou ETFs, FIIs, BDRs, cripto, dólar) (20210815)
  10. Compare sua carteira com o CDI (20210904)
  11. Como criar médias móveis simples no Python em 5 minutos (20211105)
  12. Visualize as 7 maiores criptos no Python em 5 minutos (20221108)
  13. Capture a cotação do mini-índice com tempo real no Python utilizando o Metatrader (20211110)
  14. Estudo de caso MGLU (20211208)
  15. Sua carteira bate o dólar? Faça a comparação no Python em 5 minutos (20211209)

2022

  1. Obtenha dados de criptomoedas com Python em menos de 5 minutos (20220103)
  2. Comparação entre carteiras (20220201)
  3. Tutorial sobre Quantstats (20220218)
  4. Descubra os investidores institucionais de um papel com o Python
  5. Você está comparando ativos da forma correta?
  6. Comece a programar em Python em 1 minuto (incluindo gráfico interativo de candle)
  7. Ciclos de Mercado: avaliando a sazonalidade anual do IBOV (20220330)
  8. Spread ações ON/PN: exemplo com PETR3 e PETR4 (20220406)
  9. Maiores crises econômicas pós guerras mundiais em diferentes escalas gráficas (20220423)
Owner
Trading com Dados
Edtech focused on teaching Quantitative Finance and Data Science for Financial Markets.
Trading com Dados
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022