A Python library created to assist programmers with complex mathematical functions

Overview

libmaths

python License

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using math in their code. With pre-programmed mathematical functions ranging from linear to sextic and more, graphing in your code will be a breeze.

Quick Demo


Installation

The package is available on PyPI. Install with:

pip install libmaths

or

pip3 install libmaths

libmaths only supports Python 3.8 and above, so please make sure you are on the newest version.

General Usage

There are many functions, but here is one example:

from libmaths import polynomial

After that, graphing a quadratic function is as simple as:

polynomial.quadratic(2, 4, 6)

If you need more assistance, examples are provided here.

General Information

libmaths was created by me, a 14-year old high schooler at Lynbrook High School 3 days ago on 2/20/2021. libmaths exists to help reduce the incapability to make quick and accurate models in Python within seconds. With a limited usage of external libraries and access to a multitude of functions, libmaths' variety is one of the many things that makes it unique. With the creation of this library, I hope to bring simplicity and accuracy together.

Documentation

I am currently working on getting the documentation out to a website. It will be added upon completion.

Mathematical Functions

The mathematical functions provided in libmaths are listed below:

  1. Graphable Functions

    • Linear
      • Slope Intercept Form
      • Point Slope Form
      • Constant
    • Polynomial
      • Standard Quadratic
      • Vertex Form Quadratic
      • Cubic
      • Quartic
      • Quintic
      • Sextic
    • Trigonometry
      • Sine
      • Cosine
      • Tangent
  2. Visualizeable Functions

    • Constant Graph
      • ReLU
      • Sigmoid
  3. Others

    • Output / Graphable Functions
      • Logarithmic
      • Absolute Value
      • Sigmoid -> Int Output
      • Relu -> Int Output
      • isPrime
      • isSquare
      • Divisor

Public References

r/Python : r/Python Post

Future Plans

In the future, I plan on adding several different complex functions.

Contributing

First, install the required libraries:

pip install -r requirements.txt

Please remember that I am a high school student with less than half a year of experience in Python programming. I already know you can do better than me! If you have any issues, suggestions, or requests, please feel free to contact me by opening an issue or on my linkedin which can be found in my profile page.

Thanks for contributing!

Resources

Over the three days spent in creating this library, I used plenty of resources which can be found in my code. You will see links under many of my functions which you can read about the concepts in.

Feedback, comments, or questions

If you have any feedback or something you would like to tell me, please do not hesitate to share! Feel free to comment here on github or reach out to me through [email protected]!

©Vinay Venkatesh 2021

You might also like...
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

An abstraction layer for mathematical optimization solvers.
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Framework that uses artificial intelligence applied to mathematical models to make predictions
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection toolbox based on PyTorch.

Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

Comments
  • Updated logic in isPrime to stay consistent

    Updated logic in isPrime to stay consistent

    Comment says "from 2 to value / 2" however the code uses a loop that goes all of the way up to value. I updated the logic to be more consistent with the comment above it.

    opened by alecgirman 9
  • Use OOP to simplify code

    Use OOP to simplify code

    First and foremost, it's amazing to see a 14 year old writing a library. Keep up the good work, this is a great beginning! I hope this project gets traction, it could be very useful for school/college students for their maths assignment.

    In terms of the code, there are a few ways you could improve them. Making a polynomial class is probably more efficient and scalable than writing a function for every degree.

    How to write such class can be found at https://www.python-course.eu/polynomial_class_in_python.php

    TLDR : See the code below (taken from the page above)

    
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    class Polynomial:
     
    
        def __init__(self, *coefficients):
            """ input: coefficients are in the form a_n, ...a_1, a_0 
            """
            self.coefficients = list(coefficients) # tuple is turned into a list
    
            
        def __repr__(self):
            """
            method to return the canonical string representation 
            of a polynomial.
       
            """
            return "Polynomial" + str(self.coefficients)
    
        
        def __call__(self, x):    
            res = 0
            for coeff in self.coefficients:
                res = res * x + coeff
            return res 
    
        
        def degree(self):
            return len(self.coefficients)   
    
        
        def __add__(self, other):
            c1 = self.coefficients[::-1]
            c2 = other.coefficients[::-1]
            res = [sum(t) for t in zip_longest(c1, c2, fillvalue=0)]
            return Polynomial(*res)
    
        
        def __sub__(self, other):
            c1 = self.coefficients[::-1]
            c2 = other.coefficients[::-1]
            
            res = [t1-t2 for t1, t2 in zip_longest(c1, c2, fillvalue=0)]
            return Polynomial(*res)
     
    
        def derivative(self):
            derived_coeffs = []
            exponent = len(self.coefficients) - 1
            for i in range(len(self.coefficients)-1):
                derived_coeffs.append(self.coefficients[i] * exponent)
                exponent -= 1
            return Polynomial(*derived_coeffs)
    
        
        def __str__(self):
            
            def x_expr(degree):
                if degree == 0:
                    res = ""
                elif degree == 1:
                    res = "x"
                else:
                    res = "x^"+str(degree)
                return res
    
            degree = len(self.coefficients) - 1
            res = ""
    
            for i in range(0, degree+1):
                coeff = self.coefficients[i]
                # nothing has to be done if coeff is 0:
                if abs(coeff) == 1 and i < degree:
                    # 1 in front of x shouldn't occur, e.g. x instead of 1x
                    # but we need the plus or minus sign:
                    res += f"{'+' if coeff>0 else '-'}{x_expr(degree-i)}"  
                elif coeff != 0:
                    res += f"{coeff:+g}{x_expr(degree-i)}" 
    
            return res.lstrip('+')    # removing leading '+'
    
    opened by subash774 1
  • fleshed out ArithmeticSeries and GeometricSeries classes

    fleshed out ArithmeticSeries and GeometricSeries classes

    Fixed an import error and fleshed out ArithmeticSeries and GeometricSeries classes. This could be a good demo for generators, class methods and inheritance for you. :)

    opened by atharva-naik 0
  • Opening new file series and adding Polynomial class to polynomial.py

    Opening new file series and adding Polynomial class to polynomial.py

    I have added a new file for series, which you can use to implement sin, cosine series, arithmetic, geometric, harmonic etc. types of series, and I have also added a polynomial class which I talked about in my reddit post. I have made comments that might help you understand classes a bit. Please feel free to contact me if you face any issues. Best of luck and keep it up !!

    opened by atharva-naik 0
Owner
Simple
14 year old programming enthusiast with a strong passion toward AI and Machine Learning.
Simple
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023