A Python library created to assist programmers with complex mathematical functions

Overview

libmaths

python License

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using math in their code. With pre-programmed mathematical functions ranging from linear to sextic and more, graphing in your code will be a breeze.

Quick Demo


Installation

The package is available on PyPI. Install with:

pip install libmaths

or

pip3 install libmaths

libmaths only supports Python 3.8 and above, so please make sure you are on the newest version.

General Usage

There are many functions, but here is one example:

from libmaths import polynomial

After that, graphing a quadratic function is as simple as:

polynomial.quadratic(2, 4, 6)

If you need more assistance, examples are provided here.

General Information

libmaths was created by me, a 14-year old high schooler at Lynbrook High School 3 days ago on 2/20/2021. libmaths exists to help reduce the incapability to make quick and accurate models in Python within seconds. With a limited usage of external libraries and access to a multitude of functions, libmaths' variety is one of the many things that makes it unique. With the creation of this library, I hope to bring simplicity and accuracy together.

Documentation

I am currently working on getting the documentation out to a website. It will be added upon completion.

Mathematical Functions

The mathematical functions provided in libmaths are listed below:

  1. Graphable Functions

    • Linear
      • Slope Intercept Form
      • Point Slope Form
      • Constant
    • Polynomial
      • Standard Quadratic
      • Vertex Form Quadratic
      • Cubic
      • Quartic
      • Quintic
      • Sextic
    • Trigonometry
      • Sine
      • Cosine
      • Tangent
  2. Visualizeable Functions

    • Constant Graph
      • ReLU
      • Sigmoid
  3. Others

    • Output / Graphable Functions
      • Logarithmic
      • Absolute Value
      • Sigmoid -> Int Output
      • Relu -> Int Output
      • isPrime
      • isSquare
      • Divisor

Public References

r/Python : r/Python Post

Future Plans

In the future, I plan on adding several different complex functions.

Contributing

First, install the required libraries:

pip install -r requirements.txt

Please remember that I am a high school student with less than half a year of experience in Python programming. I already know you can do better than me! If you have any issues, suggestions, or requests, please feel free to contact me by opening an issue or on my linkedin which can be found in my profile page.

Thanks for contributing!

Resources

Over the three days spent in creating this library, I used plenty of resources which can be found in my code. You will see links under many of my functions which you can read about the concepts in.

Feedback, comments, or questions

If you have any feedback or something you would like to tell me, please do not hesitate to share! Feel free to comment here on github or reach out to me through [email protected]!

©Vinay Venkatesh 2021

You might also like...
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

An abstraction layer for mathematical optimization solvers.
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Framework that uses artificial intelligence applied to mathematical models to make predictions
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection toolbox based on PyTorch.

Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

Comments
  • Updated logic in isPrime to stay consistent

    Updated logic in isPrime to stay consistent

    Comment says "from 2 to value / 2" however the code uses a loop that goes all of the way up to value. I updated the logic to be more consistent with the comment above it.

    opened by alecgirman 9
  • Use OOP to simplify code

    Use OOP to simplify code

    First and foremost, it's amazing to see a 14 year old writing a library. Keep up the good work, this is a great beginning! I hope this project gets traction, it could be very useful for school/college students for their maths assignment.

    In terms of the code, there are a few ways you could improve them. Making a polynomial class is probably more efficient and scalable than writing a function for every degree.

    How to write such class can be found at https://www.python-course.eu/polynomial_class_in_python.php

    TLDR : See the code below (taken from the page above)

    
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    class Polynomial:
     
    
        def __init__(self, *coefficients):
            """ input: coefficients are in the form a_n, ...a_1, a_0 
            """
            self.coefficients = list(coefficients) # tuple is turned into a list
    
            
        def __repr__(self):
            """
            method to return the canonical string representation 
            of a polynomial.
       
            """
            return "Polynomial" + str(self.coefficients)
    
        
        def __call__(self, x):    
            res = 0
            for coeff in self.coefficients:
                res = res * x + coeff
            return res 
    
        
        def degree(self):
            return len(self.coefficients)   
    
        
        def __add__(self, other):
            c1 = self.coefficients[::-1]
            c2 = other.coefficients[::-1]
            res = [sum(t) for t in zip_longest(c1, c2, fillvalue=0)]
            return Polynomial(*res)
    
        
        def __sub__(self, other):
            c1 = self.coefficients[::-1]
            c2 = other.coefficients[::-1]
            
            res = [t1-t2 for t1, t2 in zip_longest(c1, c2, fillvalue=0)]
            return Polynomial(*res)
     
    
        def derivative(self):
            derived_coeffs = []
            exponent = len(self.coefficients) - 1
            for i in range(len(self.coefficients)-1):
                derived_coeffs.append(self.coefficients[i] * exponent)
                exponent -= 1
            return Polynomial(*derived_coeffs)
    
        
        def __str__(self):
            
            def x_expr(degree):
                if degree == 0:
                    res = ""
                elif degree == 1:
                    res = "x"
                else:
                    res = "x^"+str(degree)
                return res
    
            degree = len(self.coefficients) - 1
            res = ""
    
            for i in range(0, degree+1):
                coeff = self.coefficients[i]
                # nothing has to be done if coeff is 0:
                if abs(coeff) == 1 and i < degree:
                    # 1 in front of x shouldn't occur, e.g. x instead of 1x
                    # but we need the plus or minus sign:
                    res += f"{'+' if coeff>0 else '-'}{x_expr(degree-i)}"  
                elif coeff != 0:
                    res += f"{coeff:+g}{x_expr(degree-i)}" 
    
            return res.lstrip('+')    # removing leading '+'
    
    opened by subash774 1
  • fleshed out ArithmeticSeries and GeometricSeries classes

    fleshed out ArithmeticSeries and GeometricSeries classes

    Fixed an import error and fleshed out ArithmeticSeries and GeometricSeries classes. This could be a good demo for generators, class methods and inheritance for you. :)

    opened by atharva-naik 0
  • Opening new file series and adding Polynomial class to polynomial.py

    Opening new file series and adding Polynomial class to polynomial.py

    I have added a new file for series, which you can use to implement sin, cosine series, arithmetic, geometric, harmonic etc. types of series, and I have also added a polynomial class which I talked about in my reddit post. I have made comments that might help you understand classes a bit. Please feel free to contact me if you face any issues. Best of luck and keep it up !!

    opened by atharva-naik 0
Owner
Simple
14 year old programming enthusiast with a strong passion toward AI and Machine Learning.
Simple
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022