NaturalProofs: Mathematical Theorem Proving in Natural Language

Overview

NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language
Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, Kyunghyun Cho

This repo contains:

  • The NaturalProofs Dataset and the mathematical reference retrieval task data.
  • Preprocessing NaturalProofs and the retrieval task data.
  • Training and evaluation for mathematical reference retrieval.
  • Pretrained models for mathematical reference retrieval.

Please cite our work if you found the resources in this repository useful:

@article{welleck2021naturalproofs,
  title={NaturalProofs: Mathematical Theorem Proving in Natural Language},
  author={Welleck, Sean and Liu, Jiacheng and Le Bras, Ronan and Hajishirzi, Hannaneh and Choi, Yejin and Cho, Kyunghyun},
  year={2021}
}
Section Subsection
NaturalProofs Dataset Dataset
Preprocessing
Mathematical Reference Retrieval Dataset
Setup
Preprocessing
Pretrained models
Training
Evaluation

NaturalProofs Dataset

We provide the preprocessed NaturalProofs Dataset (JSON):

NaturalProofs Dataset
dataset.json [zenodo]

Preprocessing

To see the steps used to create the NaturalProofs dataset.json from raw ProofWiki data:

  1. Download the ProofWiki XML.
  2. Preprocess the data using notebooks/parse_proofwiki.ipynb.
  3. Form the data splits using notebooks/dataset_splits.ipynb.

Mathematical Reference Retrieval

Dataset

The Mathematical Reference Retrieval dataset contains (x, r, y) examples with theorem statements x, positive and negative references r, and 0/1 labels y, derived from NaturalProofs.

We provide the version used in the paper (bert-based-cased tokenizer, 200 randomly sampled negatives):

Reference Retrieval Dataset
bert-base-cased 200 negatives

Pretrained Models

Pretrained models
bert-base-cased
lstm

These models were trained with the "bert-base-cased 200 negatives" dataset provided above.

Setup

python setup.py develop

You can see the DockerFile for additional version info, etc.

Generating and tokenizing

To create your own version of the retrieval dataset, use python utils.py.

This step is not needed if you are using the reference retrieval dataset provided above.

Example:

python utils.py --filepath /path/to/dataset.json --output-path /path/to/out/ --model-type bert-base-cased
# => Writing dataset to /path/to/out/dataset_tokenized__bert-base-cased_200.pkl

Evaluation

Using the retrieval dataset and a model provided above, we compute the test evaluation metrics in the paper:

  1. Predict the rankings:
python naturalproofs/predict.py \
--method bert-base-cased \      # | lstm
--model-type bert-base-cased \  # | lstm
--datapath /path/to/dataset_tokenized__bert-base-cased_200.pkl \
--datapath-base /path/to/dataset.json \
--checkpoint-path /path/to/best.ckpt \
--output-dir /path/to/out/ \
--split test  # use valid during model development
  1. Compute metrics over the rankings:
python naturalproofs/analyze.py \
--method bert-base-cased \      # | lstm
--eval-path /path/to/out/eval.pkl \
--analysis-path /path/to/out/analysis.pkl

Training

python naturalproofs/model.py \
--datapath /path/to/dataset_tokenized__bert-base-cased_200.pkl \
--default-root-dir /path/to/out/

Classical Retrieval Baselines

TF-IDF example:

python naturalproofs/baselines.py \
--method tfidf \
--datapath /path/to/dataset_tokenized__bert-base-cased_200.pkl \
--datapath-base /path/to/dataset.json \
--savedir /path/to/out/

Then use analyze.py as shown above to compute metrics.

Owner
Sean Welleck
Sean Welleck
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023