HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

Related tags

Deep LearningHODEmu
Overview

HODEmu

HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of cosmological parameters Omega_m, Omega_b, sigma_8, h_0 and redshift.

The Emulator is trained on satellite abundance of Magneticum simulations Box1a/mr spanning 15 cosmologies (see Table 1 of the paper) and on all satellites with a stellar mass cut of M* > 2 1011 M. Use Eq. 3 to rescale it to a stelalr mass cut of 1010M.

The Emulator has been trained with sklearn GPR, however the class implemented in hod_emu.py is a stand-alone porting and does not need sklearn to be installed.

satellite average abundance for two Magneticum Box1a/mr simulations, from Ragagnin et al. 2021

TOC:

Install

You can either )1) download the file hod_emu.py and _hod_emu_sklearn_gpr_serialized.py or (2) install it with python -mpip install git+https://github.com/aragagnin/HODEmu. The package depends only on scipy. The file hod_emu.py can be executed from your command line interface by running ./hod_emu.py in the installation folder.

Check this ipython-notebook for a guided usage on a python code: https://github.com/aragagnin/HODEmu/blob/main/examples.ipynb

Example 1: Obtain normalisation, logslope and gaussian scatter of Ns-M relation

The following command will output, respectively, normalisation A, log-slope \beta, log-scatter \sigma, and the respective standard deviation from the emulator. Since the emulator has been trained on the residual of the power-law dependency in Eq. 6, the errors are respectively, the standard deviation on log-A, on log-beta, and on log-sigma. Note that --delta can be only 200c or vir as the paper only emulates these two overdensities.

 ./hod_emu.py  200c  .27  .04   0.8  0.7   0.0 #overdensity omega_m omega_b sigma8 h0 redshift

Here below we will use hod_emyu as python library to plot the Ns-M relation. First we use hod_emu.get_emulator_m200c() to obtain an instance of the Emulator class trianed on Delta_200c, and the function emu.predict_A_beta_sigma(input) to retrieve A,\beta and \sigma.

Note that input can be evaluated on a number N of data points (in this example only one), thus being is a N x 5 numpy array and the return value is a N x 3 numpy array. The parameter emulator_std=True will also return a N x 3 numpy array with the corresponding emulator standard deviations.

import hod_emu
Om0, Ob0, s8, h0, z = 0.3, 0.04, 0.8, 0.7, 0.9

input = [[Om0, Ob0, s8, h0, 1./(1.+z)]] #the input must be a 2d array because you can feed an array of data points

emu = hod_emu.get_emulator_m200c() # use get_emulator_mvir to obtain the emulator within Delta_vir

A, beta, sigma  =  emu.predict_A_beta_sigma(input).T #the function outputs a 1x3 matrix 

masses = np.logspace(14.5,15.5,20)
Ns = A*(masses/5e14)**beta 

plt.plot(masses,Ns)
plt.fill_between(masses, Ns*(1.-sigma), Ns*(1.+sigma),alpha=0.2)
plt.xlabel(r'$M_{\rm{halo}}$')
plt.ylabel(r'$N_s$')
plt.title(r'$M_\bigstar>2\cdot10^{11}M_\odot \ \ \ \tt{ and }  \ \ \ \ \  r
   )
plt.xscale('log')
plt.yscale('log')

params_tuple, stds_tuple  =  emu.predict_A_beta_sigma(input, emulator_std=True) #here we also asks for Emulator std deviation

A, beta, sigma = params_tuple.T
error_logA, error_logbeta, error_logsigma = stds_tuple.T

print('A: %.3e, log-std A: %.3e'%(A[0], error_logA[0]))
print('B: %.3e, log-std beta: %.3e'%(beta[0], error_logbeta[0]))
print('sigma: %.3e, log-std sigma: %.3e'%(sigma[0], error_logsigma[0]))

Will show the following figure:

Ns-M relation produced by HODEmu

And print the following output:

A: 1.933e+00, log-std A: 1.242e-01
B: 1.002e+00, log-std beta: 8.275e-02
sigma: 6.723e-02, log-std sigma: 2.128e-01

Example 2: Produce mock catalog of galaxies

In this example we use package hmf to produce a mock catalog of haloe masses. Note that the mock number of satellite is based on a gaussian distribution with a cut on negative value (see Eq. 5 of the paper), hence the function non_neg_normal_sample.

2\cdot10^{11}M_\odot \ \ \ \tt{ and } \ \ \ \ \ r
import hmf.helpers.sample
import scipy.stats

masses = hmf.helpers.sample.sample_mf(400,14.0,hmf_model="PS",Mmax=17,sort=True)[0]    
    
def non_neg_normal_sample(loc, scale,  max_iters=1000):
    "Given a numpy-array of loc and scale, return data from only-positive normal distribution."
    vals = scipy.stats.norm.rvs(loc = loc, scale=scale)
    mask_negative = vals<0.
    if(np.any(vals[mask_negative])):
        non_neg_normal_sample(loc[mask_negative], scale[mask_negative],  max_iters=1000)
    # after the recursion, we should have all positive numbers
    
    if(np.any(vals<0.)):
        raise Exception("non_neg_normal_sample function failed to provide  positive-normal")    
    return vals

A, beta, logscatter = emu.predict_A_beta_sigma( [Om0, Ob0, s8, h0, 1./(1.+z)])[0].T

Ns = A*(masses/5e14)**beta

modelmu = non_neg_normal_sample(loc = Ns, scale=logscatter*Ns)
modelpois = scipy.stats.poisson.rvs(modelmu)
modelmock = modelpois

plt.fill_between(masses, Ns *(1.-logscatter), Ns *(1.+logscatter), label='Ns +/- log scatter from Emu', color='black',alpha=0.5)
plt.scatter(masses, modelmock , label='Ns mock', color='orange')
plt.plot(masses, Ns , label='
    
      from Emu'
    , color='black')
plt.ylim([0.1,100.])
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$M_{\rm {halo}} [M_\odot]$')
plt.ylabel(r'$N_s$')
plt.title(r'$M_\bigstar>2\cdot10^{11}M_\odot \ \ \ \tt{ and }  \ \ \ \ \  r
    )

plt.legend();

Will show the following figure:

Mock catalog of halos and satellite abundance produced by HODEmu

Owner
Antonio Ragagnin
I cook math
Antonio Ragagnin
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022