Gesture Volume Control Using OpenCV and MediaPipe

Overview

Gesture Volume Control Using OpenCV and MediaPipe

output

This Project uses OpenCV and MediaPipe to Control system volume

💾 REQUIREMENTS

  • opencv-python
  • mediapipe
  • comtypes
  • numpy
  • pycaw
pip install -r requirements.txt

MEDIAPIPE

mediapipeLogo

MediaPipe offers open source cross-platform, customizable ML solutions for live and streaming media.

Hand Landmark Model

After the palm detection over the whole image our subsequent hand landmark model performs precise keypoint localization of 21 3D hand-knuckle coordinates inside the detected hand regions via regression, that is direct coordinate prediction. The model learns a consistent internal hand pose representation and is robust even to partially visible hands and self-occlusions.

To obtain ground truth data, we have manually annotated ~30K real-world images with 21 3D coordinates, as shown below (we take Z-value from image depth map, if it exists per corresponding coordinate). To better cover the possible hand poses and provide additional supervision on the nature of hand geometry, we also render a high-quality synthetic hand model over various backgrounds and map it to the corresponding 3D coordinates.

Solution APIs

Configuration Options

Naming style and availability may differ slightly across platforms/languages.

  • STATIC_IMAGE_MODE
    If set to false, the solution treats the input images as a video stream. It will try to detect hands in the first input images, and upon a successful detection further localizes the hand landmarks. In subsequent images, once all max_num_hands hands are detected and the corresponding hand landmarks are localized, it simply tracks those landmarks without invoking another detection until it loses track of any of the hands. This reduces latency and is ideal for processing video frames. If set to true, hand detection runs on every input image, ideal for processing a batch of static, possibly unrelated, images. Default to false.

  • MAX_NUM_HANDS
    Maximum number of hands to detect. Default to 2.

  • MODEL_COMPLEXITY
    Complexity of the hand landmark model: 0 or 1. Landmark accuracy as well as inference latency generally go up with the model complexity. Default to 1.

  • MIN_DETECTION_CONFIDENCE
    Minimum confidence value ([0.0, 1.0]) from the hand detection model for the detection to be considered successful. Default to 0.5.

  • MIN_TRACKING_CONFIDENCE:
    Minimum confidence value ([0.0, 1.0]) from the landmark-tracking model for the hand landmarks to be considered tracked successfully, or otherwise hand detection will be invoked automatically on the next input image. Setting it to a higher value can increase robustness of the solution, at the expense of a higher latency. Ignored if static_image_mode is true, where hand detection simply runs on every image. Default to 0.5.


Source: MediaPipe Hands Solutions

mediapipeLogo mediapipeLogo

📝 CODE EXPLANATION

Importing Libraries

import cv2
import mediapipe as mp
import math
import numpy as np
from ctypes import cast, POINTER
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume

Solution APIs

mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands

Volume Control Library Usage

devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
volume = cast(interface, POINTER(IAudioEndpointVolume))

Getting Volume Range using volume.GetVolumeRange() Method

volRange = volume.GetVolumeRange()
minVol , maxVol , volBar, volPer= volRange[0] , volRange[1], 400, 0

Setting up webCam using OpenCV

wCam, hCam = 640, 480
cam = cv2.VideoCapture(0)
cam.set(3,wCam)
cam.set(4,hCam)

Using MediaPipe Hand Landmark Model for identifying Hands

with mp_hands.Hands(
    model_complexity=0,
    min_detection_confidence=0.5,
    min_tracking_confidence=0.5) as hands:

  while cam.isOpened():
    success, image = cam.read()

    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    results = hands.process(image)
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    if results.multi_hand_landmarks:
      for hand_landmarks in results.multi_hand_landmarks:
        mp_drawing.draw_landmarks(
            image,
            hand_landmarks,
            mp_hands.HAND_CONNECTIONS,
            mp_drawing_styles.get_default_hand_landmarks_style(),
            mp_drawing_styles.get_default_hand_connections_style()
            )

Using multi_hand_landmarks method for Finding postion of Hand landmarks

lmList = []
    if results.multi_hand_landmarks:
      myHand = results.multi_hand_landmarks[0]
      for id, lm in enumerate(myHand.landmark):
        h, w, c = image.shape
        cx, cy = int(lm.x * w), int(lm.y * h)
        lmList.append([id, cx, cy])    

Assigning variables for Thumb and Index finger position

if len(lmList) != 0:
      x1, y1 = lmList[4][1], lmList[4][2]
      x2, y2 = lmList[8][1], lmList[8][2]

Marking Thumb and Index finger using cv2.circle() and Drawing a line between them using cv2.line()

cv2.circle(image, (x1,y1),15,(255,255,255))  
cv2.circle(image, (x2,y2),15,(255,255,255))  
cv2.line(image,(x1,y1),(x2,y2),(0,255,0),3)
length = math.hypot(x2-x1,y2-y1)
if length < 50:
    cv2.line(image,(x1,y1),(x2,y2),(0,0,255),3)

Converting Length range into Volume range using numpy.interp()

vol = np.interp(length, [50, 220], [minVol, maxVol])

Changing System Volume using volume.SetMasterVolumeLevel() method

volume.SetMasterVolumeLevel(vol, None)
volBar = np.interp(length, [50, 220], [400, 150])
volPer = np.interp(length, [50, 220], [0, 100])

Drawing Volume Bar using cv2.rectangle() method

cv2.rectangle(image, (50, 150), (85, 400), (0, 0, 0), 3)
cv2.rectangle(image, (50, int(volBar)), (85, 400), (0, 0, 0), cv2.FILLED)
cv2.putText(image, f'{int(volPer)} %', (40, 450), cv2.FONT_HERSHEY_COMPLEX,
        1, (0, 0, 0), 3)}

Displaying Output using cv2.imshow method

cv2.imshow('handDetector', image) 
    if cv2.waitKey(1) & 0xFF == ord('q'):
      break

Closing webCam

cam.release()

📬 Contact

If you want to contact me, you can reach me through below handles.

@prrthamm   Pratham Bhatnagar

Owner
Pratham Bhatnagar
Computer Science Engineering student at SRM University. || Blockchain || ML Enthusiast || Open Source || Team member @srm-kzilla || Associate @NextTechLab
Pratham Bhatnagar
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023