A Unified Generative Framework for Various NER Subtasks.

Related tags

Deep LearningBARTNER
Overview

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks.

Install the package in the requirements.txt, then use the following commands to install two other packages

pip install git+https://github.com/fastnlp/[email protected]
pip install git+https://github.com/fastnlp/fitlog

You need to put your data in the parallel folder of this repo

    - BARTNER/
        - train.py
        ...
    - data/
        - conll2003
            - train.txt
            - text.txt
            - dev.txt
        - en-ontonotes
            - ...
        - Share_2013
        - Share_2014
        - CADEC
        - en_ace04
        - en_ace05
        - genia

For the conll2003 and en-ontonotes you data in each split should like (The first column is words, the second column is tags. We assume the tag is the BIO-tagging)

LONDON B-LOC
1996-08-30 O

West B-MISC
Indian I-MISC
all-rounder O
Phil B-PER

For nested dataset en_ace04, en_ace05 and genia, the data should like (each line is a jsonline, contains ners and sentences keys.)

{"ners": [[[16, 16, "DNA"], [4, 8, "DNA"], [24, 26, "DNA"], [19, 20, "DNA"]], [[31, 31, "DNA"], [2, 2, "DNA"], [4, 4, "DNA"], [30, 31, "DNA"]], [[23, 24, "RNA"], [14, 15, "cell_type"], [1, 2, "RNA"]], [[2, 2, "DNA"]], [], [[0, 0, "DNA"], [9, 9, "cell_type"]]], "sentences": [["There", "is", "a", "single", "methionine", "codon-initiated", "open", "reading", "frame", "of", "1,458", "nt", "in", "frame", "with", "a", "homeobox", "and", "a", "CAX", "repeat", ",", "and", "the", "open", "reading", "frame", "is", "predicted", "to", "encode", "a", "protein", "of", "51,659", "daltons."], ["When", "the", "homeodomain", "from", "HB24", "was", "compared", "to", "known", "mammalian", "and", "Drosophila", "homeodomains", "it", "was", "found", "to", "be", "only", "moderately", "conserved,", "but", "when", "it", "was", "compared", "to", "a", "highly", "diverged", "Drosophila", "homeodomain", ",", "H2.0,", "it", "was", "found", "to", "be", "80%", "identical."], ["The", "HB24", "mRNA", "was", "absent", "or", "present", "at", "low", "levels", "in", "normal", "B", "and", "T", "lymphocytes", ";", "however,", "with", "the", "appropriate", "activation", "signal", "HB24", "mRNA", "was", "induced", "within", "several", "hours", "even", "in", "the", "presence", "of", "cycloheximide", "."], ["Characterization", "of", "HB24", "expression", "in", "lymphoid", "and", "select", "developing", "tissues", "was", "performed", "by", "in", "situ", "hybridization", "."], ["Positive", "hybridization", "was", "found", "in", "thymus", ",", "tonsil", ",", "bone", "marrow", ",", "developing", "vessels", ",", "and", "in", "fetal", "brain", "."], ["HB24", "is", "likely", "to", "have", "an", "important", "role", "in", "lymphocytes", "as", "well", "as", "in", "certain", "developing", "tissues", "."]]}
{"ners": [[[16, 16, "DNA"], [4, 8, "DNA"], [24, 26, "DNA"], [19, 20, "DNA"]], [[31, 31, "DNA"], [2, 2, "DNA"], [4, 4, "DNA"], [30, 31, "DNA"]], [[23, 24, "RNA"], [14, 15, "cell_type"], [1, 2, "RNA"]], [[2, 2, "DNA"]], [], [[0, 0, "DNA"], [9, 9, "cell_type"]]], "sentences": [["There", "is", "a", "single", "methionine", "codon-initiated", "open", "reading", "frame", "of", "1,458", "nt", "in", "frame", "with", "a", "homeobox", "and", "a", "CAX", "repeat", ",", "and", "the", "open", "reading", "frame", "is", "predicted", "to", "encode", "a", "protein", "of", "51,659", "daltons."], ["When", "the", "homeodomain", "from", "HB24", "was", "compared", "to", "known", "mammalian", "and", "Drosophila", "homeodomains", "it", "was", "found", "to", "be", "only", "moderately", "conserved,", "but", "when", "it", "was", "compared", "to", "a", "highly", "diverged", "Drosophila", "homeodomain", ",", "H2.0,", "it", "was", "found", "to", "be", "80%", "identical."], ["The", "HB24", "mRNA", "was", "absent", "or", "present", "at", "low", "levels", "in", "normal", "B", "and", "T", "lymphocytes", ";", "however,", "with", "the", "appropriate", "activation", "signal", "HB24", "mRNA", "was", "induced", "within", "several", "hours", "even", "in", "the", "presence", "of", "cycloheximide", "."], ["Characterization", "of", "HB24", "expression", "in", "lymphoid", "and", "select", "developing", "tissues", "was", "performed", "by", "in", "situ", "hybridization", "."], ["Positive", "hybridization", "was", "found", "in", "thymus", ",", "tonsil", ",", "bone", "marrow", ",", "developing", "vessels", ",", "and", "in", "fetal", "brain", "."], ["HB24", "is", "likely", "to", "have", "an", "important", "role", "in", "lymphocytes", "as", "well", "as", "in", "certain", "developing", "tissues", "."]]}
...

For discontinuous dataset Share_2013, Share_2014 and CADEC, the data should like ( each sample has two lines, if the second line is empty means there is not entity. )

Abdominal cramps , flatulence , gas , bloating .
0,1 ADR|3,3 ADR|7,7 ADR|5,5 ADR

Cramps would start within 15 minutes of taking pill , even during meals .
0,0 ADR

...

We use code from https://github.com/daixiangau/acl2020-transition-discontinuous-ner to pre-process the data.

You can run the code by directly using

python train.py

The following output should be achieved

Save cache to caches/data_facebook/bart-large_conll2003_word.pt.                                                                                                        
max_len_a:0.6, max_len:10
In total 3 datasets:
        test has 3453 instances.
        train has 14041 instances.
        dev has 3250 instances.

The number of tokens in tokenizer  50265
50269 50274
input fields after batch(if batch size is 2):
        tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 8]) 
        src_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 11]) 
        first: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 11]) 
        src_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 
        tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 
target fields after batch(if batch size is 2):
        entities: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,) 
        tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 8]) 
        target_span: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,) 
        tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) 

training epochs started 2021-06-02-11-49-26-964889
Epoch 1/30:   0%|                                                         | 15/32430 [00:06<3:12:37,  2.80it/s, loss:6.96158

Some important python files are listed below

- BartNER
  - data
     - pipe.py # load and process data
  - model
     - bart.py # the model file
  - train.py  # the training file

The different Loaders in the data/pipe.py is meant to load data, and the data.BartNERPipe class is to process data, the loader should load data into a DataBundle object, you can mock the provided Loader to write your own loader, as long as your dataset has the following four fields, the BartNERPipe should be able to process it

- raw_words  # List[str]
    # ['AL-AIN', ',', 'United', 'Arab', 'Emirates', '1996-12-06']
- entities  # List[List[str]]
    # [['AL-AIN'], ['United', 'Arab', 'Emirates']]
- entity_tags  # List[str], the same length as entities
    # ['loc', 'loc']
- entity_spans # List[List[int]], the inner list must have an even number of ints, means the start(inclusive,开区间) and end(exclusive,开区间) of an entity segment
    # [[0, 1], [2, 5]] or for discontinous NER [[0, 1, 5, 7], [2, 3, 5, 7],...]

In order to help you reproduce the results, we have hardcoded the hyper-parameters for each dataset in the code, you can change them based on your need. We conduct all experiments in NVIDIA-3090(24G memory). Some known difficulties about the reproduction of this code: (1) Some datasets (nested and discontinous) will drop to 0 or near 0 F1 during training, please drop these results; (2) randomness will cause large performance variance for some datasets, please try to run multiple times.

We deeply understand how frustrating it can be if the results are hard to reproduce, we tried our best to make sure the results were at least reproducible in our equipment (Usually take average from at least five runs).

Owner
I am currently a PhD candidate in Fudan University.
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022