Code for the paper "Graph Attention Tracking". (CVPR2021)

Related tags

Deep LearningSiamGAT
Overview

SiamGAT

1. Environment setup

This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before running this code:

pip install -r requirements.txt

2. Test

Download the pretrained model and put them into tools/snapshot directory.
From BaiduYun:

From Google Driver:

Download testing datasets and put them into test_dataset directory. Jsons of commonly used datasets can be downloaded from BaiduYun. If you want to test the tracker on a new dataset, please refer to pysot-toolkit to set test_dataset.

The tracking result can be download from BaiduYun (extract code: 0wod) or GoogleDriver for comparision.

python testTracker.py \    
        --config ../experiments/siamgat_googlenet_otb_uav/config.yaml \
	--dataset UAV123 \                                 # dataset_name
	--snapshot snapshot/otb_uav_model.pth              # tracker_name

The testing result will be saved in the results/dataset_name/tracker_name directory.

3. Train

Prepare training datasets

Download the datasets:

Note: training_dataset/dataset_name/readme.md has listed detailed operations about how to generate training datasets.

Download pretrained backbones

Download pretrained backbones from link and put them into pretrained_models directory.

Train a model

To train the SiamGAT model, run train.py with the desired configs:

cd tools
python train.py

4. Evaluation

We provide the tracking results (extract code: 0wod) (results in Google driver) of GOT-10k, LaSOT, OTB100 and UAV123. If you want to evaluate the tracker on OTB100, UAV123 and LaSOT, please put those results into results directory. Evaluate GOT-10k on Server.
Get TrackingNet results from BaiduYun (extract code: iwlj), and evaluate it on Server.

python eval.py 	                          \
	--tracker_path ./results          \ # result path
	--dataset UAV123                  \ # dataset_name
	--tracker_prefix 'otb_uav_model'   # tracker_name

5. Acknowledgement

The code is implemented based on pysot and SiamCAR. We would like to express our sincere thanks to the contributors.

6. Cite

If you use SiamGAT in your work please cite our papers:

@InProceedings{Guo_2021_CVPR,
author = {Guo, Dongyan and Shao, Yanyan and Cui, Ying and Wang, Zhenhua and Zhang, Liyan and Shen, Chunhua},
title = {Graph Attention Tracking},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}

@InProceedings{Guo_2020_CVPR,
author = {Guo, Dongyan and Wang, Jun and Cui, Ying and Wang, Zhenhua and Chen, Shengyong},
title = {SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023