Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Overview

Manipulator Learning

This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In particular, we have a set of environments with a simulated version of our lab's mobile manipulator, the Thing, containing a UR10 mounted on a Ridgeback base, as well as a set of environments using a table-mounted Franka Emika Panda.

The package currently contains variations of the following tasks:

  • Reach
  • Lift
  • Stack
  • Pick and Place
  • Sort
  • Insert
  • Pick and Insert
  • Door Open
  • Play (multitask)

Requirements

  • python (3.7+)
  • pybullet
  • numpy
  • gym
  • transforms3d
  • Pillow (for rendering)
  • liegroups

Installation

git clone https://github.com/utiasSTARS/manipulator-learning
cd manipulator-learning && pip install .

Usage

The easiest way to use environments in this repository is to import the whole envs module and then initialize using getattr. For example, to load our Panda Play environment with the insertion tray:

import manipulator_learning.sim.envs as manlearn_envs
env = getattr(manlearn_envs, 'PandaPlayInsertTrayXYZState')()

obs = env.reset()
next_obs, rew, done, info = env.step(env.action_space.sample())

You can also easily initialize the environment with a wide variety of different keyword arguments, e.g:

env = getattr(manlearn_envs, 'PandaPlayInsertTrayXYZState')(main_task='stack_01')

Image environments

All environments that are suffixed with Image or Multiview produce observations that contain RGB and depth images as well as numerical proprioceptive data. Here is an example of how you can access each type of data in these environments:

obs = env.reset()
img = obs['img']
depth = obs['depth']
proprioceptive = obs['obs']

By default, all image based environments render headlessly using EGL, but if you want to render the full pybullet GUI, you can using the render_opengl_gui and egl flags like this:

env = getattr(manlearn_envs, 'PandaPlayInsertTrayXYZState')(render_opengl_gui=True, egl=False)

Environment Details

Thing (mobile manipulator) environments

Our mobile manipulation environments were primarily designed to allow base position changes between task episodes, but don't actually allow movement during an episode. For this reason, many included environments include both an Image version and a Multiview version, where all observation and control parameters are identical, except that the base is fixed in the Image version, and the base moves (between episodes) in the Multiview version. See, for example, manipulator_learning/sim/envs/thing_door.py.

Panda Environments

Our panda environments contain several of the same tasks as our Thing environments. Additionally, we have a set of "play" environments that are multi-task.

Current environment list

['PandaPlayXYZState', 
'PandaPlayInsertTrayXYZState', 
'PandaPlayInsertTrayDPGripXYZState', 
'PandaPlayInsertTrayPlusPickPlaceXYZState', 
'PandaLiftXYZState', 
'PandaBringXYZState', 
'PandaPickAndPlaceAirGoal6DofState', 
'PandaReachXYZState', 
'PandaStackXYZState',
'ThingInsertImage', 
'ThingInsertMultiview', 
'ThingPickAndInsertSucDoneImage', 
'ThingPickAndInsertSucDoneMultiview',
'ThingPickAndPlaceXYState', 
'ThingPickAndPlacePrevPosXYState', 
'ThingPickAndPlaceGripPosXYState', 
'ThingPickAndPlaceXYZState', 
'ThingPickAndPlaceGripPosXYZState', 
'ThingPickAndPlaceAirGoalXYZState', 
'ThingPickAndPlace6DofState', 
'ThingPickAndPlace6DofLongState', 
'ThingPickAndPlace6DofSmallState', 
'ThingPickAndPlaceAirGoal6DofState', 
'ThingBringXYZState',
'ThingLiftXYZStateMultiview',
'ThingLiftXYZState', 
'ThingLiftXYZMultiview', 
'ThingLiftXYZImage', 
'ThingPickAndPlace6DofSmallImage', 
'ThingPickAndPlace6DofSmall160120Image', 
'ThingPickAndPlace6DofSmallMultiview', 
'ThingSort2Multiview', 
'ThingSort3Multiview', 
'ThingPushingXYState', 
'ThingPushingXYImage', 
'ThingPushing6DofMultiview', 
'ThingReachingXYState', 
'ThingReachingXYImage', 
'ThingStackImage', 
'ThingStackMultiview', 
'ThingStackSmallMultiview', 
'ThingStackSameMultiview', 
'ThingStackSameMultiviewV2', 
'ThingStackSameImageV2', 
'ThingStack3Multiview', 
'ThingStackTallMultiview', 
'ThingDoorImage', 
'ThingDoorMultiview']

Roadmap

  • Make environment generation compatible with gym.make
  • Documentation for environments and options for customization
  • Add imitation learning/data collection code
  • Fix bug that timesteps remaining on rendered window takes an extra step to update
Owner
STARS Laboratory
We are the Space and Terrestrial Autonomous Robotic Systems Laboratory at the University of Toronto
STARS Laboratory
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022